Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 641-648    DOI: 10.3724/SP.J.1037.2012.00042
  论文 本期目录 | 过刊浏览 |
残余奥氏体增强低碳Q-P-T钢塑性的新效应
王颖,张柯,郭正洪,陈乃录,戎咏华
上海交通大学材料科学与工程学院, 上海 200240
A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL
WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.
, , , , . A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL[J]. Acta Metall Sin, 2012, 48(6): 641-648.

全文: PDF(4379 KB)  
摘要: 低碳Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (质量分数, %) 钢通过新型Q-P-T工艺处理后获得高的抗拉强度和良好延伸率的综合性能. 对该低碳Q-P-T钢在拉伸过程中残余奥氏体含量的XRD 测定和形变孪晶马氏体的TEM观测, 证明了相变诱发塑性(TRIP) 效应的存在. 基于形变过程中马氏体和残余奥氏体中的平均位错密度测定和 TEM的观察, 验证了在中碳钢中最新发现的残余奥氏体吸收位错(DARA) 新效应在低碳钢中同样存在, 由此提出了DARA效应产生的条件, 阐明了残余奥氏体增强高强度钢塑性的机制.
关键词 高强度钢Q-P-T工艺平均位错密度残余奥氏体残余奥氏体吸收位错 (DARA) 效应    
Abstract:A low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (mass fraction, %) steel exhibits the combination of high tensile strength and good elongation after treated by a novel quenching-partitioning-tempering (Q-P-T) process. The variation in volume fraction of retained austenite in this steel with strain is measured by XRD, and the deformed twin-type martensite plates are also observed by TEM, from which the transformation induced plasticity (TRIP) effect in this steel is confirmed. Based on the measurement of average dislocation densities in both martensite and retained austenite combined with TEM observation, the effect of dislocation absorption by retained austenite (DARA) is found in the low carbon steel, similar to that in the medium carbon steel proposed recently, from which the generation conditions of DARA effect is proposed, and the mechanism of retained austenite on ductility enhancement of high strength steel is clarified.
Key wordshigh strength steel    quenching-partitioning-tempering (Q-P-T) process    average dislocation density    retained austenite    effect of dislocation absorption by retained austenite (DARA)
收稿日期: 2012-01-19     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金重点项目51031001和国家自然科学基金面上项目51071101 资助

作者简介: 王颖, 男, 1982年生, 博士生
[1] Sakuma Y. In: Baker M A ed.,  Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale:Association for Iron-Steel Technology, 2004: 11

[2] Sugimoto K, Kobayshi M, Hashimoto S.  Metall Trans, 1992; 23: 3085

[3] Speer J G, Matlock D K, Cooman B C, Schroch J G.  Acta Mater,2003; 51: 2661

[4] Matlock D K, Brautigam V E, Speer J G.  Mater Sci Forum,2003; 426-432: 1089

[5] Xu Z Y.  Mater Sci Forum, 2007; 561-565: 2283

[6] Wang X D, Zhong N, Rong Y H, Xu Z Y.  J Mater Res, 2009; 24: 261

[7] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H.  Acta Metall Sin,2011; 47: 489

    (张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报,2011; 47: 489)

[8] Zhong N, Wang X D, Rong Y H, Wang L.  Mater Sci Eng, 2009; A506: 111

[9] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H.  Mater Sci Eng,2011; A528: 8006

[10] Zackay V F, Parker E R, Fahr D, Busch R.  ASM Trans Quart,1967; 60: 252

[11] Webster D.  ASM Trans Quart, 1968; 61: 816

[12] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H.  Mater Sci Eng, 2011; A528: 8486

[13] Rong Y H.  Acta Metall Sin, 2011; 47: 1483

     (戎咏华. 金属学报, 2011; 47: 1483)

[14] Koistinen D P, Marburger R E.  Acta Metall, 1959; 7: 59

[15] Fan X.  Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159

     (范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[16] Durnin J, Ridal K A.  J Iron Steel Inst, 1968; 1: 60

[17] Heimendahl M V.  Electron Microscopy of Materials: An Introduction. New York: Academic Press, 1980: 185

[18] Woo W, Balogh L, Ungar T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308

[19] Li W, Xu W Z, Wang X D, Rong Y H.  J Alloys Compd, 2009; 474: 546

[20] Stokes A R.  Proc Phys Soc, 1948; 61: 382

[21] Baker R G, Nutting J.  ISI Special Report No. 64.London: The Iron and Steel Institute, 1959: 1

[22] Lu L, Sui M L, Lu K.  Science, 2000; 287: 1463

[23] Wasserbach W.  Philos Mag, 1986; A53: 335

[24] Rhee M, Zbib H M, Hirth J P, Huang H, Rubia T.  Modelling Simul Mater Sci Eng, 1998; 6: 467

[25] Mitchell T E, Spitzig W A.  Acta Metall, 1965; 13: 1169
 
[1] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[3] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[4] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[10] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[11] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[12] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[14] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[15] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.