Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 473-478    DOI: 10.3724/SP.J.1037.2009.00646
  论文 本期目录 | 过刊浏览 |
0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性
冯春;方鸿生;白秉哲;郑燕康
清华大学材料科学与工程系先进材料教育部重点实验室; 北京 100084
PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb
FENG Chun; FANG Hongsheng; BAI Bingzhe; ZHENG Yankang
Key Laboratory of Advanced Materials of Ministry of Education; Department of Material Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

冯春 方鸿生 白秉哲 郑燕康. 0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性[J]. 金属学报, 2010, 46(4): 473-478.
, , , . PHASE TRANSFORMATION AND STRENGTH–TOUGHNESS OF A FGBA/BG DIPHASE STEEL CONTAINING 0.02%Nb[J]. Acta Metall Sin, 2010, 46(4): 473-478.

全文: PDF(3019 KB)  
摘要: 

采用Gleeble-1500D热模拟机进行热模拟实验和轧制实验,研究了添加0.02%Nb对仿晶界型铁素体(FGBA)/粒状贝氏体(BG)复相空冷钢相变及力学性能的影响. 结果表明, 0.02%Nb使该钢的连续冷却转变曲线右移, 淬透性增加; 0.02%Nb抑制了γ→α相变, 细化了仿晶界铁素体, 促进了粒状贝氏体转变,细化了粒状贝氏体及其内部的铁素体片条及马氏体-奥氏体(M-A)岛. 与不含Nb的FGBA/BG复相钢相比, 由于组织细化及强化相体积分数的提高,含0.02%Nb的复相钢经轧后空冷后抗拉强度上升了157 MPa, 屈服强度增加了93 MPa, 强化效果显著. 分析了添加0.02%Nb使复相钢的组织细化及强化相体积分数增加的原因.

关键词 粒状贝氏体 相变 强韧性 微量Nb 空冷    
Abstract

In order to produce Mn–series low carbon steels using alloying elements with low cost and following the conventional production line without controlled cooling facilities and not needing special heat–treatment, Mn–series low carbon air cooling grain boundary allotriomorphic ferrite (FGBA)/granular bainite (BG) steels, alloying with Si–Mn–Cr, have been developed. The effect of 0.02%Nb on the phase transformation and strength–toughness of a FGBA/BG steel have been investigated by using Gleeble–1500D machine and hot rolling test in this paper. Two specimens with and without Nb addition were deformed by 21% at 850  and then air cooling to room temperature. For Nb free steel, the average size of FGBA is 25 μm in length and 10 μm in width. The average size of intragranular ferrite is about 6—8 μm. For FGBA/BG steel with 0.02%Nb, the average size of FGBA is 10 μm in lengtand 4 μm in width. The average size of intragranular ferrite is less than 4 μm. Compared with Nb free steel, the size of bainitic ferrite and martensite/austenite (M–A) island decease and their corresponding volume fractions increase in the FGBA/BG steel with 0.02%Nb. The experimental results indicate that the addition of 0.02%Nb increases the hardenability of the FGBA/BG steel, suppresses the transformation of  γ→α, refines the size of grain boundary allotriomorphic ferrite, promotes the granular bainitic transformation, lowers the bainitic start temperature (Bs), and refines the granular bainite including its bainitic ferrite and M–A islands. It is suggested that the effects of structure refinement and increase of strengtening phases improve the strength of the FGBA/BG steel with 0.02%Nb. Compared wih ypicaNb ree FGBA/BG steel after hot rolling and air cooling, it is found that the tensile strengtand yielstrength of the FGBA/BG steel wit0.02Nb% rise to 157 MPa and 97 MPa respectively. Moreover, some possible reasons of structure refinement and increase of stregthening phases induced by 0.02%Nb addition have been disscussed in this paper.

Key wordsgranular bainite    phase transformation    mechanical properties    small addition of Nb    air cooling
收稿日期: 2009-09-24     
基金资助:

国家重点基础研究发展计划资助项目 2004CB619105

作者简介: 冯春, 男, 1980年生, 博士生

[1]Thompson SW, Colvin D J, Krauss G. Metall Trans, 1990; 21A: 1493
[2]Park K T, Kim Y S, Lee J G. Mater Sci Eng, 2000; A293: 165
[3]Adachi Y, Tomida T, Hinotani S. Tetsu Hagan´e 1999, 85,620
[4](足立吉隆, 富田俊郎, 日野谷重晴. 铁と钢, 1999; 85: 620)
[5]Hickson M R, Gibbs R K, Hondgson P D. ISIJ Int 1999, 39,1176
[6]Han B Q, Yue S. J Mater Process Technol 2003, 136,100
[7]Fang H S, Feng C, Zheng Y K, Bai B Z. J Iron Steel Res Int, 2008; 15: 1
[8]Xu P G, Fang H S, Bai B Z. J Iron Steel Res Int, 2002; 9: 33
[9]Xu P G, Fang H S, Bai B Z. Acta Metall Sin, 2002; 38: 255
[10](徐平光, 方鸿生, 白秉哲. 金属学报, 2002; 38: 255)
[11]Wang J P, Yang Z G, Bai B Z, Fang H S. Mater Sci Eng, 2004; A369: 112
[12]Li L, Ding H, Du L X. Acta Metall Sin, 2006; 42: 1227
[13](李龙, 丁桦, 杜林秀. 金属学报, 2006; 42: 1227)
[14]Lee Y K. In: Hong J M eds., Proc of the 2nd Symposium on Development of Advanced Steels. Shenyang: Northeastern University Press, 2004: 29
[15]Abad R, Fernandez A I, Lqpez B. ISIJ Int 2001, 41,1373
[16]Petrov R, Kestens L, Houbaert Y. Mater Charact 2004, 53,51
[17]Deng T Y, Xu Y B, Yuan X Q. Acta Metall Sin, 2007; 43: 1091
[18](邓天勇, 许云波, 袁向前. 金属学报, 2007; 43: 1091)
[19]Yuan X Q, Liu Z Y, Jiao S H. ISIJ Int 2006, 46,579
[20]Sato K, Suehiro M. Tetsu Hagan´e 1991, 77,675
[21](佐藤一昭, 末广正芳. 铁と钢, 1991; 77: 675)
[22]Zrník J, Kvackaj T. Mater Sci Eng, 2001; A319: 321
[23]Fang H S, Wang J J. Acta Metall Sin, 1994; 30: 491
[24](方鸿生, 王家军. 金属学报, 1994; 30: 491)
[25]Aaronson H I. Decomposition of Austenite by Diffusional Processes. New York: Interscience Press, 1962: 387
[26]Weiss I, Jonas J J. Metall Trans, 1979; 10A: 831
[27]Hansen S S, Vandersande J B, Cohen M. Metall Tran, 1980; 11A: 387
[28]Jonas J J, Akben M G. Met Forum, 1981; 4: 92
[29]Coladas R, Masounave J. In: Bailon J P eds., Proc of Int Conf on The Hot Deformation of Austenite. New York: the Metallurgical Society of AIME, 1977: 341
[30]Yamamoto S, Ouchi C. In: Osuka T eds.Proc of Int Conf on Thermomechanical Processing of Microalloyed Austenite. New York: The etallurgical Society of AIME, 1982:613
[31]Medina S F. Scr Metall ater 1995, 32,43
[32]Irvine K J, Pickerin F B, Gladman T. J Iron Steel Inst, 1967; 205: 161
[33]Fang H S, Wang J J, Yang Z G. Bainite Transformation. Beijing: Science Press, 1999: 13
[34](方鸿生, 王家军, 杨志刚. 贝氏体相变. 北京: 科学出版社, 1999: 13)
[35]Fang H S, Bai B Z, Zheng X H. Acta Metall Sin, 1986; 22: 283
[36](方鸿生, 白秉哲, 郑秀华. 金属学报, 1986; 22: 283)
[37]Xu F Y. PhD Thesis, Tsinghua University, Beijing, 2009
[38](许峰云. 清华大学博士论文, 北京, 2009)

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[14] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.