Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 466-472    DOI: 10.3724/SP.J.1037.2009.00752
  论文 本期目录 | 过刊浏览 |
多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析
胡桂娟1;2;张克实1;石艳柯1;苏莉3
1. 广西大学工程防灾与结构安全重点实验室; 南宁 530004
2. 广西建设职业技术学院; 南宁 530004
3. 航天科工集团二院二一零所; 西安 710065
CRYSTAL PLASTICITY NUMERICAL ANALYSIS ON YIELD AND SUBSEQUENT YIELD OF POLYCRYS-TALLINE COPPER UNDER COMBINED TENSION–TORSION LOADING
HU Guijuan 1;2; ZHANG Keshi 1; SHI Yanke 1; SU Li 3
1. Key Laboratory of Disaster Prevention and Structural Safety; Guangxi University; Nanning 530004
2. Guangxi Polytechnic of Construction; Nanning 530004
3. Institute No. 210 of the Second Academy of the CASIC; Xi’an 710065
引用本文:

胡桂娟 张克实 石艳柯 苏莉. 多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析[J]. 金属学报, 2010, 46(4): 466-472.
, , , . CRYSTAL PLASTICITY NUMERICAL ANALYSIS ON YIELD AND SUBSEQUENT YIELD OF POLYCRYS-TALLINE COPPER UNDER COMBINED TENSION–TORSION LOADING[J]. Acta Metall Sin, 2010, 46(4): 466-472.

全文: PDF(865 KB)  
摘要: 

针对预拉伸和预扭转变形后的拉扭组合实验, 用多晶集合体模型为代表性单元, 结合晶体塑性理论对多晶Cu进行了晶粒尺度的屈服特性研究, 采用子模型法对晶粒尺度的代表性单元模型和多晶Cu试样拉扭实验进行跨尺度材料力学行为分析. 结合对多晶集合体的后继屈服面形状及演化趋势的研究, 探讨不同加载路径和不同屈服点定义对材料后继屈服面的影响; 通过对不同加载路径多晶Cu非均匀性的统计分析, 探讨加载历史对多晶材料细观塑性变形不均匀性的影响. 分析结果表明: 后继屈服面的形状和尖角效应的出现与预加载方向和屈服定义有关; 加载路径不同, 多晶体内变形不均匀性的差异很大. 运用子模型的晶体塑性模拟与后继屈服实验的结果有较好的一致性.

关键词 晶体塑性 后继屈服面 子模型法 多晶Cu    
Abstract

Combined tension–torsion test under pre–tension and pre–torsion deformation, the yield characteristics of polycrystalline copper in grain scale was investigated by crystal plasticity theory associated with polycrystalline aggregate model. Through a sub–model method, the cross–scale analyses of mechanical behavior of polycrystalline copper by the calculations using a representative volume element (RVE) and a specimen under tension and torsion were carried out. Based on the research on the shape and the evolution of a subsequent yield surface, the effects of different loading paths and yield definitions on the subsequent yield surface were explored. The heterogeneous statistical nlysis of the polycrystalline copper under different loading paths was also performed. And further more, the effects of loading history on the subsequent yield surface, and on the micro heterogeneous distribution were estimated. The numerical results show that the shape of the subsequent yield surface and the appearance of yield surface corner are related to the pre–loading direction and the different yield definitions, the heterogeneous deformation in polycrystal under different loading paths is very various. The results by the analyibased on crystal plasticity calculation combined with the sub–model method are compared with experimental results and they are in reasonable agreement.

Key wordscrystal plasticity    subsequent yield surface    sub-model method    polycrystal Cu
收稿日期: 2009-11-11     
基金资助:

国家自然科学基金项目90815001和10662001, 广西自然科学基金项目0832024和广西大学科学基金项目资助

作者简介: 胡桂娟, 女, 1973年生, 博士生

[1] Khan A S, Wang X W. Int J Plast, 1993; 9: 889
[2] Miastkowski J, Szczepi´nski W. Int J Solids Struct, 1965; 1: 189
[3] Kuwabara T, Kuroda M, Tvergaard V, Nomura K. Acta Mater, 2000; 48: 2071
[4] Khan A S, Kazmi R, Pandey A, Stoughton T. Int J Plast, 2009; 25: 1611
[5] Naghdi P M, Essenburg F, Koff W. J Appl Mech, 1958; 25: 201
[6] Shiratori E, Ikegami K, Kaneko K. Bull JSME, 1974; 17: 1405
[7] Phillips A, Moon H. Acta Mech, 1977; 27: 91
[8] Ivey H J. J Mech Eng Sci, 1961; 3: 15
[9] Mair W M, Pugh H. J Mech Eng Sci, 1964; 6: 150
[10] Hill R. Proc R Soc London, 1948; 193A: 281
[11] Hill R. The Mathematical Theory of Plasticity. London: Oxford University Press, 1950: 1
[12] Ziegler H. Quart Appl Math, 1959; 17: 55
[13] Mroz Z. J Mech Phys Solids, 1967; 15: 163
[14] Prager W. J Appl Phys, 1949; 20: 235
[15] Kuroda M, Tvergaard V. Acta Mater, 1999; 47: 3879
[16] Kalidindi S R, Schoenfeld S E. Mater Sci Eng, 2000; A293: 120
[17] Lequeu P, Gilormini P, Montheillet F, Bacroix B, Jonas J J. Acta Metall, 1987; 35: 439
[18] van Houtte P. Texture Microstruct, 1987; 7: 29
[19] Zattarin P, Lipinski P, Rosochowski A. Int J Mech Sci, 2004; 46: 1377
[20] Lipinski P, Berveiller M. Int J Plast, 1989; 5: 149
[21] Clausen B, Lorentzen T, Leffers T. Acta Mater, 1998; 46:3087
[22] Liang N G, Cheng S P. Mech Eng, 1991; 13: 65
(梁乃刚, 程三品. 力学与实践, 1991; 13: 65)
[23] Phillips A, Lu W Y. J Eng Mater Technol, 1984; 106: 349
[24] Ishikawa H. Int J Plast, 1997; 13: 533
[25] Helling D E, Miller A K, Stout M G. J Eng Mater Technol, 1986; 108: 13
[26] Hutchinson J W. Proc R Soc London, 1976; 348A: 101
[27] Shi Y K, Zhang K S, Hu G J. Acta Metall Sin, 2009; 45: 1370
(石艳柯, 张克实, 胡桂娟. 金属学报, 2009; 45: 1370)
[28] Hutchinson J W. Proc R Soc London, 1970; 319A: 247
[29] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 837
[30] Zhang K S. Acta Mech Sin, 2004; 36: 714
(张克实.力学学报, 2004; 36: 714)
[31] Zhang K S, Wu M S, Feng R. Int J Plast, 2005; 21: 801
[32] Phillips A, Liu C S, Justusson J W. Acta Mech, 1972; 14: 119
[33] Gupta N K, Meyers A. Int J Plast, 1992; 6: 729

[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[3] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[4] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[5] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[6] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.
[7] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.
[8] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[9] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[10] 闫五柱, 张嘉振, 周振功, 岳珠峰. 基于晶体塑性理论的晶界压痕行为研究[J]. 金属学报, 2015, 51(1): 100-106.
[11] 石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.
[12] 张克实; 郭运强; 刘林 . γ-γ'双相镍基高温合金蠕变损伤的微观分析[J]. 金属学报, 2007, 43(9): 961-967 .
[13] 郑成武; 兰勇军; 肖纳敏; 李殿中; 李依依 . 热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J]. 金属学报, 2006, 42(5): 474-480 .
[14] 耿小亮; 张克实; 郭运强; 秦亮 . 细观非均质性对多晶材料塑性行为的影响[J]. 金属学报, 2006, 42(1): 49-53 .
[15] 肖纳敏; 岳珠峰; 兰勇军; 佟铭明; 李殿中 . 介观尺度上热变形奥氏体储存能演化的计算机模拟[J]. 金属学报, 2005, 41(5): 496-502 .