Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 479-486    DOI: 10.3724/SP.J.1037.2009.00713
  论文 本期目录 | 过刊浏览 |
圆坯连铸电磁旋流水口的数值模拟
苏志坚1; 李德伟1; 孙立为1;2; 丸川雄净3; 赫冀成1
1.东北大学材料电磁过程研究教育部重点实验室; 沈阳 110004
2.宝山钢铁股份有限公司; 上海 201900
3.住友金属工業(株); 大阪 541--0041
NUMERICAL SIMULATION OF SWIRLING FLOW IN IMMERSION NOZZLE INDUCED BY A ROTATING ELECTROMAGNETIC FIELD IN ROUND BILLET CONTINUOUS CASTING OF STEEL
SU Zhijian 1; LI Dewei 1; SUN Liwei 1;2; MARUKAWA Katsukiyo 3; HE Jicheng 1
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education); Northeastern University; Shenyang 110004
2. Baosteel Group Corporation; Shanghai 201900
3. Sumitomo Metal Industries; Ltd.; Osaka 541–0041
引用本文:

苏志坚 李德伟 孙立为 丸川雄净 赫冀成. 圆坯连铸电磁旋流水口的数值模拟[J]. 金属学报, 2010, 46(4): 479-486.
. NUMERICAL SIMULATION OF SWIRLING FLOW IN IMMERSION NOZZLE INDUCED BY A ROTATING ELECTROMAGNETIC FIELD IN ROUND BILLET CONTINUOUS CASTING OF STEEL[J]. Acta Metall Sin, 2010, 46(4): 479-486.

全文: PDF(5148 KB)  
摘要: 

在浸入式水口外部采用可移动的旋转电磁场装置, 使水口内钢液形成旋转流动.通过对磁场和流场的数值模拟, 分析了电磁参数和电磁旋流装置结构对钢液内磁感应强度和旋流速度大小及分布的影响. 结果表明, 钢液中心竖直轴线上的磁感应强度随线圈电流增大而增大, 随频率增大而减小. 采用圆形磁体时磁感应强度最大且分布均匀, 优于马蹄形磁体; 线圈电流500 A, 频率50 Hz时, 获得了在圆形装置作用下浸入式水口内及结晶器内的钢液的速度矢量分布, 此时结晶器内产生了较强的旋流流动. 从现场操作角度出发,提出了改进马蹄形电磁旋流装置. 通过低熔点合金的电磁旋流实验验证了数值模拟的结果及计算方法的可靠性.

关键词 电磁搅拌旋流水口浸入式水口连铸数值模拟    
Abstract

Swirling flow in an immersion nozzle generated with a swirl blade in it has been proved to be effective to reduce the meniscus fluctuation and homogenize the distribution of temperature in a mold during continuous casting of steel. However, this process has insuperable limitations: the swirling flow intensity can not be regulated to meet the process operation needs; the immersion nozzle with blade is liable to clog, leading to its low life span; and frequent replace of a nozzle in casting may cause operational difficulties. In this study a new process that a rotating electromagnetic field was set up around the immersion nozzle to induce a swirling flow in it by Lorentz force, has been proposed. In this case, te same effects as the swirl blade can be achieved without the above limitations. Four types electromagnetic stirrers, such as round, half round, U–shaped and modified U–shaped, were used in the simulation and their effects of structure, coil current intensity and magnetic field frequency on the magnetic field distribution and the flow filed in the immersion nozzle and mold during the round billet continuous casting of steel were numerical simulated and analyzed. The simulated results show that the magnetic flux density is the largest and magnetic field distribution is most uniform under the round electromagnetic stirrer. By using round electromagnetic stirrer, 500 A coil current intensity and 50 Hz frequency will induce a strong swirling flow and reversing flow in the mold. The distribution of flow field under the modified U–shaped stirrer is better than that under the U–shaped, and closer to that uner the round one. Considering the operational difficulty to replace the nozzle etc., the modified U–shaped electromagnetic stirrer is a better alternative to the round stirrer. The numerical simulation method has been proven to be sound by the swirling experiment of a low melting point alloy in an immersion nozzle surrounded by a round stirrer.

Key wordselectromagnetic stirring    swirling flow    immersion nozzle    numerical simulation
收稿日期: 2009-10-27     
基金资助:

国家自然科学基金项目50674021和高等学校学科创新引智计划项目B07015资助

作者简介: 苏志坚, 男, 1973年生, 副教授, 博士

[1] Yin R Y. Steelmaking, 2008; 24(6): 1
(殷瑞钰. 炼钢, 2008; 24(6): 1)
[2] Zhang C Y, Zheng L. Jiangsu Metall, 2007; 35(2): 5
(张成元, 郑林. 江苏冶金, 2007; 35(2): 5)
[3] Yokoya S, Takagi S, Iguchi M, Asako Y, Westoff R, Hara S. ISIJ Int, 1998; 38: 827
[4] Yokoya S, Takagi S, Iguchi M, Marukawa K, Yasugaira W, Hara S. ISIJ Int, 2000; 40: 584
[5] Takagi S, Yokoya S, Iguchi M, Hara S. ISIJ Int, 1997; 10: 809
[6] Tsukaguchi Y, Kawamoto M, Hayashi H, Furuhashi S, Yokoya S, Takagi S, Marukawa K. In: JISF eds, The 10th Sino–Japan Conference on Steel and Iron, Tokyo: The Japan Iron and Steel Federation, 2004: 191
[7] Hallgren L, Takagi S, Eriksson R, Yokoya S, Jonsson P. ISIJ Int, 2006; 46: 1645
[8] Kholmatov S, Takagi S, Jonsson L, Jonsson P, Yokoya S. IIJ Int, 2007; 47: 80
[9] Tsukaguchi Y, Nakamura O, Jonsson P, Yokoya S, Tanaka T, ara S. ISIJ Int, 2007; 47: 1436
[10] Jia H H, Yu Z, Lei Z S, Deng K, Chen J C, Hua W J, Ren Z M. Acta Metall Sin, 2008; 44: 375
(贾洪海, 于湛, 雷作胜, 邓康, 陈家昶, 华文杰, 任忠鸣. 金属学报, 2008; 44: 375)
[11] Cui X C, Liu Z C, Tian X M, Lin J B. Special Steel, 2005; 26(3): 6
(崔小朝, 刘梓才, 田新明, 林金保. 特殊钢, 2005; 26(3): 6)
[12] Jia H H. Master Thesis, Shanghai University, 2008
(贾洪海. 上海大学硕士论文, 2008)
[13] Fundamental Research of Electromagnetic Metallurgy. In: ISIJ eds, The 129–130th Nishiyama Memorial Forum, Tokyo: ISIJ, 1989: 1
[14] Nobel Research Committee. In: ISIJ eds, New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 2000: 1
[15] Herrick C H, Behrens R G. J Cryst Growth, 1981; 51: 183
[16] Sundberg Y. In: The Metal Society eds, Proc Symp International Union of Theoretical and Applied Mechanics, Cambridge: The Metal Society, 1982: 217
[17] Kojima Y, Mitsuaki F. In: ISIJ eds, New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 2000: 187
[18] Getselev Z N. US Pat, 3612151, 1971
[19] ISIJ. New Process Developing by Using Lorentz Force, Tokyo: ISIJ, 1993: 1
[20] Nagai J, Suzuki K, Kojima S. Iron Steel Eng, 1984; 61(5):41
[21] He J C, Katsukiyo M, Su Z J. CN Pat, 200510047290.6,2005
[22] Moreau R. Magnetohydrodynamics. Netherlands Dordrecht: Kluwer Academic Publishers, 1990: 37
[23] Thomas B G. Metall Mater Trans, 1990; 37B: 387
[24] Spitzer K H, Dubke M, Schwerdtfeger K. Metalll Trans, 1986; 17B(3): 119
[25] Yoneyama Y, Takeuchi E, Matsu K. Seitetsu Kenkyu,1989; 335: 26
(米山泰章, 竹内荣一, 松圭一郎. 制铁研究, 1989; 335: 26)

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[8] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[9] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[10] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[12] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[13] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[14] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[15] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.