Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 988-993    
  论文 本期目录 | 过刊浏览 |
Nd含量对纳米晶NdxFe94-xB6合金磁性能的影响
包小倩;高学绪;朱洁;张茂才;周寿增
北京科技大学新金属材料国家重点实验室; 北京 100083
EFFECTS OF Nd CONTENT ON MAGNETIC PROPERTIES OF NANOCRYSTALLINE NdxFe94-xB6 ALLOYS
BAO Xiaoqian; GAO Xuexu; ZHU Jie; ZHANG Maocai; ZHOU Shouzeng
State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
引用本文:

包小倩 高学绪 朱洁 张茂才 周寿增. Nd含量对纳米晶NdxFe94-xB6合金磁性能的影响[J]. 金属学报, 2009, 45(8): 988-993.
, , , , , . EFFECTS OF Nd CONTENT ON MAGNETIC PROPERTIES OF NANOCRYSTALLINE NdxFe94-xB6 ALLOYS[J]. Acta Metall Sin, 2009, 45(8): 988-993.

全文: PDF(1317 KB)  
摘要: 

用X射线衍射(XRD)、差示扫描量热分析(DSC)、高分辨扫描电镜(HRSEM)和振动样品磁强计(VSM)等研究了Nd含量对快淬纳米晶NdxFe94-xB6 (x=11.0-16.8)合金的组织结构、磁性能、交换耦合作用和矫顽力的影响. 结果表明, 22 m/s(甩带速度)快淬带在最佳退火条件下, 合金带的内禀矫顽力Hcix=11.0的601.3 kA/m单调升高到x=16.8的1277.3 kA/m; 相反, 剩余磁极化强度Jrx=11.0的1.047 T单调下降到x=16.8的0.721 T, 最大磁能积(BH)max随Nd含量增加先升高后下降;Nd11.8Fe82.2B6合金带的综合性能最好: Jr=0.992 T,Hci=727.9 kA/m, (BH)max=137.2 kJ/m3. Nd2Fe14B晶粒之间的交换耦合作用随Nd含量增加而降低, 但x=16.8的合金带仍具有较强的交换耦合作用. 矫顽力主要由钉扎场决定. 最佳退火后, 合金薄带的晶粒尺寸随Nd含量增加无明显变化. 针对不同Nd含量的合金, 建立了一个组织模型, 利用该模型很好地解释了Nd含量对磁性能及交换耦合作用的影响机制.

关键词 纳米晶Nd-Fe-B 交换耦合作用 矫顽力机制 显微组织    
Abstract

Nanocomposite magnets have attracted considerable attention as a probable new generation of permanent magnets with a potential theoretical maximum energy product of 1 MJ/m3 due to remanence enhancement resulting from intergrain exchange interactions between magnetically
soft and hard grains. However, the presence of soft phase increases remanence but coercive field is significantly decreased. Alloys with Nd content higher than 11%(atom fraction), i.e., close to the stoichiometry composition of Nd2Fe14B, are being studied to further improve coercivity. Nanocrystalline NdxFe94−xB6(x=11.0—16.8) alloys were prepared by melt–spinning at a rate of 22 m/s cooperating with subsequent annealing. The effects of Nd content on microstructure, magnetic properties, exchange coupling interactions and coercivity mechanism have been studied by X–ray diffraction (XRD), differential scanning calorimeter (DSC), high resolution scanning electron microscope (HRSEM) and vibrating sample magnetometer (VSM). The intrinsic coercivity Hci increases from 601.3 kA/m for x=11.0 to 1277.3 kA/m for x=16.8 monotonously, and on the contrary, the remanent polarization Jr reduces from 1.047 T for x=11.0 to 0.721 T for x=16.8. The maximum energy product (BH)max first increases
and then reduces with increasing Nd content. The optimum magnetic properties with Jr=0.992 T, Hci=727.9 kA/m and (BH)max=137.2 kJ/m3 are achieved by annealing melt–spun Nd11.8Fe82.2B6 ibbons. Although the exchange coupling interactions are degraded by increasing Nd content in the ribbons, it is still relatively strong for the alloy with x=16.8. The coercivities of alloys are determined mainly by pinning field. Nd content almost does not influence microstructure under optimal annealing conditions. The microstructral model of nanocrystalline Nd–Fe–B with different Nd content is presented and used to analyze the effect of Nd content on magnetic properties and exchange coupling effect well.

Key wordsnanocrystalline Nd-Fe-B    exchange coupling    coercivity mechanism    microstructure
收稿日期: 2008-12-08     
ZTFLH: 

TG132.2

 
作者简介: 包小倩, 女, 1974年生, 讲师, 博士

[1] Zhang M, Zhang Z D, Sun X K, Liu W, Geng D Y, Zhao X G, Jin X M. J Alloys Compd, 2004; 364: 238
[2] Hirosawa S, Shigemoto Y, Miyoshi T, Kanekiyo H. Scr Mater, 2003; 48: 839
[3] Pampillo L G, Saccone F D, Sirkin H R M. Physica, 2007; 389B: 172
[4] Wang C, Yan M, Zhang W Y. Mater Sci Eng, 2005; B123: 80
[5] Zern A, Seeger M, Bauer J, Kronm¨uller H. J Magn Magn Mater, 1998; 184: 89
[6] Ono H, Tayu T, Waki N, Sugiyama T, Shimada M, Kanou M, Yamamoto H, Takasug K. J Appl Phys, 2003; 93: 8113
[7] Jin Z Q, Okumura H, Mu˜noz J S, Zhang Y, Wang H L, Hadjipanayis G C. J Phys, 2002; 35D: 2893
[8] Kwon HW, Hadjipanayis G C. J Magn Magn Mater, 2007; 310: 2575
[9] Takezawa M, Aiba K, Yasuda H, Morimoto Y, Hidaka T, Yamasaki J, Kato H, Yagi M. J Magn Magn Mater, 2007; 310: 2572
[10] Ding J, Li Y, Yong P T. J Phys, 1998; 31D: 2745
[11] Kelly P E, O’Grady K, Mayo P I. IEEE Trans Magn, 1989; 25: 3881
[12] Bao X Q, Qiao Y, Guo X X, Zhang M C, Zhu J, Zhou S Z. J Univ Sci Technol Beijing, 2007; 14: 547

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.