Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 861-865    
  论文 本期目录 | 过刊浏览 |
非比例载荷下Al--7Si--0.3Mg合金的循环特性及微观机理
莫德锋1; 何国球1; 朱正宇1; 刘晓山1 张卫华2
1. 同济大学材料科学与工程学院; 上海 200092
2. 西南交通大学牵引动力国家重点实验室; 成都 610031
FATIGUE FEATURES AND MECHANISM OF Al--7Si--0.3Mg CAST ALLOY UNDER NONPROPORTIONAL LOADINGS
MO Defeng1; HE Guoqiu1; ZHU Zhengyu1; LIU Xiaoshan1; ZHANG Weihua2
1 School of Materials Science and Engineering; Tongji University; Shanghai 200092 2 State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 610031
引用本文:

莫德锋 何国球 朱正宇 刘晓山 张卫华. 非比例载荷下Al--7Si--0.3Mg合金的循环特性及微观机理[J]. 金属学报, 2009, 45(7): 861-865.
, , , , . FATIGUE FEATURES AND MECHANISM OF Al--7Si--0.3Mg CAST ALLOY UNDER NONPROPORTIONAL LOADINGS[J]. Acta Metall Sin, 2009, 45(7): 861-865.

全文: PDF(1145 KB)  
摘要: 

在等效应变幅为0.22%时, 研究了Al--7Si--0.3Mg铸造铝合金在比例、圆形、正方形、菱形、矩形与椭圆形路径下的循环变形行为, 并用TEM观察了疲劳失效试样的位错结构. 结果表明: 在多轴加载条件下, 材料均表现出循环硬化现象, 循环硬化的速率和程度对加载路径有依赖性; 非比例载荷下材料的疲劳寿命远小于比例加载时的寿命, 且非比例加载下的疲劳寿命对各种非比例加载路径有依赖性, 其中圆形路径下疲劳寿命最短; 位错在不同的加载路径下形成不同的组态结构, 位错与强化相、枝晶界及位错间的交互作用是铸造铝合金发生循环硬化的主要原因.

关键词 Al--7Si--0.3Mg合金非比例加载多轴疲劳位错    
Abstract

Widely application of cast aluminum alloy requires an understanding of its cyclic deformation behavior which is material dependent, and it is a complex function of strain amplitude, loading path, etc. In this study, multi--axial fatigue tests were conducted on cast Al--7Si--0.3Mg alloy with the same equivalent strain amplitude of 0.22% under six multi--axial path loadings, which were proportional, circular, square, diamond, rectangle and ellipse paths. TEM was employed to investigate the dislocation structures of the fatigue failure specimens. Cyclic hardening dominates the whole fatigue process under every loading path, but the rate and extent of cyclic hardening are quite dependent on particular loading paths. The fatigue life under nonproportional loading is much lower than that under proportional loading, and it also depends on the various nonproportional loading paths. The specimen with circular path loading has the shortest life and the most severe cyclic hardening among all the loading paths. The continuously changing of direction of maximum shear--stress plane is attributed to the complicated dislocation substructures and severe stress concentration during the cyclic process. The interaction among dislocation, particle and cell boundary is the main reason for cyclic hardening. The structure and density of dislocation in fatigue failure specimens under various loading paths exhibit quite different. From double dislocation bands, multiple dislocation bands, labyrinth structure to cell structure, the dislocation mobility decreases and stress concentration degree increases.

Key wordsAl--7Si--0.3Mg alloy    nonproportional loading    multi--axial fatigue    dislocation
收稿日期: 2008-11-25     
ZTFLH: 

TG146.2

 
基金资助:

国家973资助项目2007CB714705;国家自然科学基金资助项目50771073;新世纪优秀人才支持计划NCET-05-0388;国家973资助项目2007CB714705;国家自然科学基金资助项目50771073;新世纪优秀人才支持计划NCET-05-0388

作者简介: 莫德锋, 男, 1982年生, 博士生

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mater Sci Eng, 2000;
A280: 37
[2] Wang M J, Huang D Y, Jiang H T. Heat Treat Met, 2006; 31(9): 34
(王孟君, 黄电源, 姜海涛. 金属热处理, 2006; 31(9): 34)

[3] Ding X Q, He G Q, Chen C S, Liu X S, Zhu Z Y. J Mater Sci Eng, 2005; 23: 302
(丁向群, 何国球, 陈成澍, 刘小山, 朱正宇. 材料科学与工程学报, 2005; 23: 302)

[4] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 73
[5] Wang Q G, Apelian D, Lados D A. J Light Met, 2001; 1: 85
[6] McDowell D L, Gall K, HorstemeyerM F, Fan J. Eng Fract Mech, 2003; 70: 49
[7] Mo D F, He G Q, Hu Z F, Zhu Z Y, Chen C S, Zhang W H. Int J Fatigue, 2008; 30: 1843
[8] Kida S, Itoh T, Sakane M, Ohnami M, Socie D F. Fatigue Fract Eng Mater Struct, 1997; 20: 1375
[9] He G Q, Chen C S, Gao Q. Acta Metall Sin, 2003; 39: 715
(何国求, 陈成澍, 高庆. 金属学报, 2003; 39: 715)

[10] Wang S Z. Fatigue of Metal. Beijing: Science and Technology Press, 1985: 528
(王栓柱. 金属疲劳. 北京: 科学技术出版社, 1985: 528)

[11] Suresh S, translated by Wang Z G, et al. Fatigue of Materials. 2nd Ed., Beijing: National Defence Industry Press, 1999: 190
(Suresh S著; 王中光 等译. 材料的疲劳. 第2版, 北京: 国防工业出版社, 1999: 190)

[12] Wang Q G. Metall Mater Trans, 2004; 35A: 2707
[13] Nie J F, Muddle B C, Aaronson H I, Ringer S P, Hirth J P. Metall Mater Trans, 2002; 33A: 1649
[14] Chakrabarti D J, Laughlin D E. Prog Mater Sci, 2004; 49: 389

[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[13] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[14] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[15] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.