Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 866-872    
  论文 本期目录 | 过刊浏览 |
加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响
王国珍1; 王玉良2; 轩福贞1; 涂善东1; 王正东1
1) 华东理工大学机械与动力工程学院承压系统安全科学教育部重点实验室;上海 200237 2) 兰州理工大学有色金属新材料省部共建国家重点实验室; 兰州 730050
EFFECTS OF LOADING RATE, NOTCH GEOMETRY AND LOADING MODE ON THE CLEAVAGE FRACTURE BEHAVIOR OF 16MnR STEEL
WANG Guozhen1;  WANG Yuliang2;  XUAN Fuzhen1; TU Shantung1; WANG Zhengdong1
1) Key Laboratory of Safety Science of Pressurized System; Ministry of Education; School of Mechanical and Power Engineering; East China University of Science and Technology; Shanghai 200237
2) State Key Laboratory of Advanced Non--Ferrous Metal Materials; Lanzhou University of Technology; Lanzhou 730050
引用本文:

王国珍 王玉良 轩福贞 涂善东 王正东. 加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响[J]. 金属学报, 2009, 45(7): 866-872.
, , , . EFFECTS OF LOADING RATE, NOTCH GEOMETRY AND LOADING MODE ON THE CLEAVAGE FRACTURE BEHAVIOR OF 16MnR STEEL[J]. Acta Metall Sin, 2009, 45(7): 866-872.

全文: PDF(1256 KB)  
摘要: 

通过实验和有限元(FEM)计算研究了加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响. 结果表明, 该钢的解理断裂机理及相应测得的细观解理断裂应力σf和宏观解理断裂应力σF不随加载速率、缺口几何和加载方式发生变化. 不同缺口几何和加载方式试样的缺口韧性随加载速率的变化可以通过判据 σyymaxσF预测. σyymax为缺口前的最大正应力, 可通过有限元计算得到. σF可作为一个工程缺口韧性参数用于含缺口类缺陷的结构完整性评定中.钢的σF值可用Griffiths--Owen缺口试样在一个温度和加载速率下获得.

关键词 16MnR钢解理断裂加载速率缺口试样应力加载方式    
Abstract

The changes in loading rate and test temperature influence deformation (yield and flow) and fracture behavior of steel. The most significant effect of increasing loading rate is to shift the quasi--static fracture toughness transition curve toward higher temperatures, that is, to raise the temperatures at which cleavage may occur. This is very critical for structural steel components. The high strain rate sensitivity of these steels makes the safety design on the basis of quasi--static behavior rather poor. Therefore, the reliability of structures possibly loaded at higher loading rates requires the knowledge of the corresponding material fracture behavior. However, the effects of loading rate on the cleavage fracture mechanism, fracture stress and toughness of various steels have not been understood completely. Specifically, the prediction of the cleavage fracture behavior in notched specimens and actual structures and components loaded at various loading rates remain to be learned. In engineering structures and components possibly loaded at various loading rates, notch defects may be difficult to avoid and some notch--like geometries are necessary for structure design. Therefore, the understanding of notch toughness at various loading rates is also very important. In this work, the effects of loading rate, notch geometry and loading mode on the cleavage fracture behavior of 16MnR steel were studied by experiments and FEM calculations. The results show that the cleavage fracture mechanism of this steel, the corresponding local cleavage fracture stress σf and macroscopic cleavage fracture stress σF do not change with the above three factors. The change of the notch toughness of the notched specimens with different notch geometries and loading modes with loading rates can be predicated by the criterion σyymaxσF, where σyymax is the maximum normal stress ahead of a notch and can be obtained by FEM calculations. The σF can be regarded as an engineering notch toughness parameter, and may be used for assessing the integrity of structures with notch defects. The σF values of steels can be measured by the Griffiths--Owen notched specimen at prescribed test temperature and loading rate.

Key words16MnR steel    cleavage fracture    loading rate    notched specimen    stress    loading mode
收稿日期: 2008-12-10     
ZTFLH: 

TG111.91

 
基金资助:

国家高技术研究发展计划项目2008AA04Z347和2006AA04Z413及国家自然科学基金项目50835003资助

作者简介: 王国珍, 男, 1965年生, 教授, 博士

[1] Couque H, Asaro R J, Duffy J, Lee S H. Metall Trans, 1988; 19A: 2179
[2] Zurek A K, Follansbee P S, Hack J. Metall Trans, 1990; 21A: 431
[3] Lee S, Rhyu J W, Cho K M, Duffy J. Metall Trans, 1993; 24A: 901
[4] Venkert A, Guduru P R, Ravichandran G. Metall Mater Trans, 2000; 31A: 1147
[5] Wang G Z, Ren X C, Chen J H. Metall Mater Trans, 2004; 35A: 1765
[6] Wang G Z, Liu Y G, Chen J H. Mater Sci Eng, 2004; A369: 181
[7] Mendiratta M G, Goetz R L, Dimiduk D M. Metall Mater Trans, 1996; 27A: 3903
[8] Wang G Z, Chen J H. Int J Fract, 1998; 89: 269
[9] Chen J H, Wang G Z, Yan C, Ma H, Zhu L. Int J Fract, 1997; 83: 105
[10] Wang G Z, Wang H J, Chen J H. Fatigue Fract Eng Mater Struct, 1999; 22: 849
[11] Chen J H, Zhu L, Ma H. Acta Metall Mater, 1990; 38: 2527
[12] Griffiths J R, Owen D R J. J Mech Phys Solids, 1971; 19: 419

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[10] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[14] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.