Please wait a minute...
金属学报  2009, Vol. 45 Issue (7): 856-860    
  论文 本期目录 | 过刊浏览 |
挤压变形Mg--x%Al--3%Ni合金的低周疲劳行为
陈立佳; 王鑫; 智莹; 徐颜武
(沈阳工业大学材料科学与工程学院; 沈阳 110178)
LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS
CHEN Lijia; WANG Xin; ZHI Ying; XU Yanwu
School of Materials Science and Engineering; Shenyang University of Technology; Shenyang 110178
引用本文:

陈立佳 王鑫 智莹 徐颜武. 挤压变形Mg--x%Al--3%Ni合金的低周疲劳行为[J]. 金属学报, 2009, 45(7): 856-860.
, , , . LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. Acta Metall Sin, 2009, 45(7): 856-860.

全文: PDF(820 KB)  
摘要: 

通过对挤压变形Mg--x%Al--3%Ni(x=4, 5, 6, 7, 质量分数)合金进行总应变控制模式的室温疲劳实验, 研究了不同Al含量的挤压变形Mg--x%Al--3%Ni合金的循环应力响应、疲劳寿命和循环应力--应变行为. 结果表明: 不同Al含量的挤压变形Mg--x%Al--3%Ni合金均表现为循环应变硬化; 挤压变形Mg--x%Al--3%Ni合金的应变疲劳寿命与塑性应变幅、弹性应变幅间的关系分别服从Coffin--Manson和Basquin关系式.

关键词 Mg--x%Al--3%Ni合金热挤压循环应力响应疲劳寿命循环应力--应变    
Abstract

Due to the low density, high specific strength and stiffness, magnesium alloys are being considered for automotive and aerospace applications. The structural applications of magnesium components need a decent low--cycle fatigue performance, because cyclic loading is often encountered. In order to identify the low--cycle fatigue behavior of the newly developed Mg--x%Al--3%Ni(x=4, 5, 6, 7, mass fraction) extruded magnesium alloys with different contents of Al, the total strain--controlled low--cycle fatigue tests were performed at room temperature. The cyclic stress response, strain fatigue life and cyclic stress--strain behaviors were investigated for the hot--extruded Mg--x%Al--3%Ni alloys. The results of the low--cyclic fatigue tests show that the hot--extruded Mg--x%Al--3%Ni alloys exhibit the cyclic strain hardening during fatigue deformation. The dependences of the strain fatigue life on plastic strain amplitude and elastic strain amplitude can be described by the Coffin--Manson and Basquin equations, respectively. In the hot extruded Mg--x%Al--3%Ni alloys with different contents of Al, the extruded Mg--5%Al--3%Ni alloy gives the longest fatigue life and the highest fatigue resistance. In addition, a linear relation between the cyclic stress amplitude and cyclic strain amplitude can be noted for the hot--extruded Mg--x%Al--3%Ni alloys.

Key wordsMg--x%Al--3%Ni alloy    hot--extrusion    cyclic stress response    fatigue life    cyclic stress--strain
收稿日期: 2008-11-25     
ZTFLH: 

TG146.2

 
基金资助:

辽宁省自然科学基金资助项目20072039

作者简介: 陈立佳, 男, 1963年生, 教授

[1] Liu J A, Li J X. Sichuan Nonferrous Met, 2007; (1): 2
(刘静安, 李建湘. 四川有色金属, 2007; (1): 2)

[2] Eliezer D, Aghion E, Froes F H. Adv Performance Mater, 1998; 5: 201
[3] Friedrich H, Schumann S. J Mater Process Technol, 2001; 117: 276
[4] Kojima Y. Mater Sci Forum, 2000; 350–351: 3
[5] Liu Y, Li Y Y, Zhang W W, Luo Z Q, Zhang D T. Light Met, 2002; (8): 56
(刘英, 李元元, 张卫文, 罗宗强, 张大童. 轻金属, 2002; (8): 56)

[6] Hu X J, Gao H W, Li C M, Liu S H, Liu L M. Shanghai Nonferrous Met, 2004; 25(3): 100
(胡晓菊, 高洪吾, 李长茂, 刘顺华, 刘黎明. 上海有色金属, 2004; 25(3): 100)

[7] Zhang S C, Duan H Q, Cai Q Z, Wei B K, Lin H T, Chen W C. Foundry, 2001; 50: 310
(张诗昌, 段汉桥, 蔡启舟, 魏伯康, 林汉同, 陈渭臣. 铸造, 2001; 50: 310)

[8] Li G Q, Wu G H, Fan Y, Ding W J. Foundry Technol, 2006; 27: 79
(李冠群, 吴国华, 樊昱, 丁文江. 铸造技术, 2006; 27: 79)

[9] Onga M S, Li Y, Blackwood D J, Ng S C. Mater Sci Eng, 2001; A304–306: 510
[10] Yao H B, Li Y,Wee A T S, Chai J W, Pan J S. Electrochim Acta, 2001; 46: 2649
[11] Chen L J, Liu Z, Hu Z Q. J Shenyang Univ Technol, 2005; 27: 253
(陈立佳, 刘 正, 胡壮麒. 沈阳工业大学学报, 2005; 27: 253)

[12] Potzies C, Kainer K U. Adv Eng Mater, 2004; 6: 281
[13] Raske D T, Morrow J. ASTM STP 465. Philadelphia: American Society for Testing and Materials, 1969: 1

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[4] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[5] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[6] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[7] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[8] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[9] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[10] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[11] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.
[12] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[13] 刘仁慈,王震,刘冬,柏春光,崔玉友,杨锐. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49(6): 641-648.
[14] 熊缨 程利霞. 挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12): 1446-1452.
[15] 王宝顺 林奔 张麦仓 董建新. G3镍基耐蚀合金管材热挤压工艺润滑行为研究 I. 玻璃润滑膜厚度模型建立及应用[J]. 金属学报, 2011, 47(3): 367-373.