Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 489-495    DOI: 10.11900/0412.1961.2018.00257
  本期目录 | 过刊浏览 |
脉冲磁场对TC4钛合金微观结构的影响及其机理探究
许擎栋1,李克俭1,蔡志鹏1,2,3(),吴瑶4
1. 清华大学机械工程系 北京 100084
2. 清华大学摩擦学国家重点实验室 北京 100084
3. 清华大学先进核能技术协同创新中心 北京 100084
4. 清华大学天津高端装备研究院 天津 300304
Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism
Qingdong XU1,Kejian LI1,Zhipeng CAI1,2,3(),Yao WU4
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
3. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
4. Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin 300304, China
全文: PDF(5361 KB)   HTML
摘要: 

研究了脉冲磁场对TC4钛合金微观结构的影响规律,发现经磁感应强度为2 T、脉冲频率为5 Hz、脉冲次数为 100次的脉冲磁场处理后,TC4钛合金的位错密度及晶界角度会发生显著变化。XRD测试结果显示,经脉冲磁场处理后TC4钛合金的位错密度提高约10.9%。采用EBSD测试得到TC4钛合金微区的KAM分布,发现经脉冲磁场作用后,TC4钛合金的位错密度发生显著变化,具体表现为:晶内位错分布更加均匀,局部高位错密度区消失;晶界附近的位错分布发生变化,同时晶界角度发生改变,小角度晶界减少而重位点阵(CSL)晶界(Σ11)增多。讨论了脉冲磁场对TC4钛合金微观组织影响的可能原因:脉冲磁场引起位错钉扎处的电子能态发生转变,使钉扎处空位或杂质原子易于移动。位错在材料内应力场提供的弹性能作用下更易脱钉扎,从而使得位错分布发生变化,材料微观组织发生改变。

关键词 TC4钛合金脉冲磁场位错密度晶界角度磁致塑性    
Abstract

In this work, the effect of pulsed magnetic treatment (PMT) on the microstructure of TC4 titanium alloy was investigated. TC4 titanium alloy is widely used in the manufacture of the blade of aviation engine. The microstructure of TC4 titanium alloy determines its property. PMT is a novel method used to modify the microstructures of alloys and has been explored in several papers recently. PMT has many advantages in the aspect of efficiency, energy-saving, non-deformation, etc. Therefore, the effect of PMT on the microstructures of TC4 titanium alloy was explored in this work. The variation of the dislocation density and the grain boundary angle of TC4 titanium alloy was observed after PMT. In the experiment, the magnetic induction density is 2 T, the pulse frequency is 5 Hz and the pulse number is 100. According to XRD tests, the dislocation density in TC4 alloy after PMT increased about 10.9%. KAM maps in EBSD test were used for evaluating the same area's dislocation density of the TC4 alloy before and after PMT. The dislocation distribution of TC4 titanium alloy changes notably: the in-grain dislocation density became more homogeneous and some local high-density areas disappeared, the distribution of dislocation near grain boundaries caused the angles of the grain boundaries altered and the fraction of low-angle grain boundaries decreased while the fraction of Σ11 grain boundaries (CSL grain boundary) increased. The motivation mechanism of the dislocation in TC4 titanium alloy under PMT was speculated based on the experimental results and some previous researches. The PMT may change the energy state of the electrons in pinning area of dislocations, which accelerates the electrons transformation from singlet state to triplet state and then increases the mobility of the vacancy or impurity atoms so that the dislocation de-pinning could occur under the original stress field and thus leads to dislocation movement and transformation of microstructure.

Key wordsTC4 titanium alloy    pulsed magnetic field    dislocation density    grain boundary angle    magnetoplasticity
收稿日期: 2018-06-14     
ZTFLH:  TG146.2  
基金资助:国家科技重大专项项目(No.2018ZX04042001)
通讯作者: 蔡志鹏     E-mail: czpdme@mail.tsinghua.edu.cn
Corresponding author: Zhipeng CAI     E-mail: czpdme@mail.tsinghua.edu.cn
作者简介: 许擎栋,男,1994年生,硕士生

引用本文:

许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism. Acta Metall Sin, 2019, 55(4): 489-495.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00257      或      https://www.ams.org.cn/CN/Y2019/V55/I4/489

图1  TC4钛合金试样脉冲磁场处理前后平均残余应力
图2  TC4脉冲磁处理前后XRD谱
图3  (ΔK)2/K 2~H 2线性拟合图
图4  脉冲磁场处理前后TC4试样微区KAM分布云图
图5  脉冲磁场处理前后TC4试样晶界角度统计
图6  电子对自旋能态及相互转化关系
图7  脉冲磁场作用下电子对自旋状态转换示意图
1 Ezugwu E O, Bonney J, Yamane Y. An overview of the machinability of aeroengine alloys [J]. J. Mater. Process. Technol., 2003, 134: 233
2 Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
3 King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening [J]. Mater. Sci. Eng., 2006, A435-436: 12
4 Sticchi M, Schnubel D, Kashaev N, et al. Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components [J]. Appl. Mech. Rev., 2014, 67: 10801
5 Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6 [J]. Opt. Lasers Eng., 2016, 77: 112
6 Correa C, Gil-Santos A, Porro J A, et al. Eigenstrain simulation of residual stresses induced by laser shock processing in a Ti6Al4V hip replacement [J]. Mater. Des., 2015, 79: 106
7 Wang S P, Li Y J, Yao M, et al. Compressive residual stress introduced by shot peening [J]. J. Mater. Process. Technol., 1998, 73: 64
8 Cai Z P, Lin J A, Zhou L A, et al. Evaluation of effect of magnetostriction on residual stress relief by pulsed magnetic treatment [J]. Mater. Sci. Technol., 2004, 20: 1563
9 Cai Z P, Huang X Q. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current [J]. Mater. Sci. Eng., 2011, A528: 6287
10 Lu A L, Tang F, Luo X J, et al. Research on residual-stress reduction by strong pulsed magnetic treatment [J]. J. Mater. Process. Technol., 1998, 74: 259
11 Ma L P, Zhao W X, Liang Z Q, et al. An investigation on the mechanical property changing mechanism of high speed steel by pulsed magnetic treatment [J]. Mater. Sci. Eng., 2014, A609: 16
12 Lin J, Zhao H Y, Cai Z P, et al. Study on the relationship between magneto-vibration and residual stress in steel materials [J]. Acta Metall. Sin. 2008, 44: 451
12 林 健, 赵海燕, 蔡志鹏等. 钢铁材料中残余应力与磁致振动的相互作用关系 [J]. 金属学报, 2008, 44: 451
13 Wu S, Zhao H Y, Lu A L, et al. Micro-mechanism model of residual stress relaxation in steels by magnetic treatment [J]. J. Tsinghua. Univ. (Sci. Technol.), 2002, 42: 147
13 吴 甦, 赵海燕, 鹿安理等. 磁处理降低钢中残余应力的微观机理模型 [J]. 清华大学学报(自然科学版), 2002, 42: 147
14 Cai Z P, Zhao H Y, Lin J, et al. Plastic deformation caused by pulsed magnetic treatment of mid-carbon steel [J]. Mater. Sci. Eng., 2007, A458: 262
15 Golovin Y I. Magnetoplastic effects in solids [J]. Phys. Solid State, 2004, 46: 789
16 Al'shits V I, Bekkauer N N, Smirnov A E, et al. Effect of a magnetic field on the yield point of NaCl crystals [J]. J. Exp. Theor. Phys., 1999, 88: 523
17 Urusovskaya A A, Al'Shits V I, Smirnov A E, et al. On the effect of a magnetic field on the yield point and kinetics of macroplasticity in LiF crystals [J]. J. Exp. Theor. Phys. Lett., 1997, 65: 497
18 Alshits V I, Darinskaya E V, Kazakova O L, et al. Magnetoplastic effect in nonmagnetic crystals [J]. Mater. Sci. Eng., 1997, A234: 617
19 Liang Z Q, Ma L P, Wang X B, et al. Influence of pulsed magnetic treatment on wear of carbide micro-end-mill [J]. Adv. Mater. Res., 2016, 1136: 143
20 Wang H M, Li P S, Zheng R, et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites [J]. Acta Phys. Sin., 2015, 64: 087104
20 王宏明, 李沛思, 郑 瑞等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制 [J]. 物理学报, 2015, 64: 087104
21 Wang H M, Zhu Y, Li G R, et al. Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress [J]. Acta Phys. Sin., 2016, 65: 146101
21 王宏明, 朱 弋, 李桂荣等. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为 [J]. 物理学报, 2016, 65: 146101
22 Alshits V I, Darinskaya E V, Koldaeva M V, et al. Magnetoplastic effect: Basic properties and physical mechanisms [J]. Crystallogr. Rep., 2003, 48: 768
23 Golovin Y I. Magnetoplastic effects in crystals in the context of spin-dependent chemical kinetics [J]. Crystallogr. Rep., 2004, 49: 668
24 Golovin Y I. Mechanochemical reactions between structural defects in magnetic fields [J]. J. Mater. Sci., 2004, 39: 5129
25 Zak A K, Majid W H A, Abrishami M E, et al. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods [J]. Solid State Sci., 2011, 13: 251
26 Mote V D, Purushotham Y, Dole B N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles [J]. J. Theor. Appl. Phys., 2012, 6: 6
27 Kumar R, Ganguli T, Chouhan V, et al. Evaluation of vertical coherence length, twist and microstrain of GaAs/Si epilayers using modified Williamson-Hall analysis [J]. J. Nano- Electron. Phys., 2014, 6: 02010
28 Aly K A, Khalil N M, Algamal Y, et al. Lattice strain estimation for CoAl2O4, nano particles using Williamson-Hall analysis [J]. J. Alloys Compd., 2016, 676: 606
29 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
30 Fujiyama K, Mori K, Kaneko D, et al. Creep damage assessment of 10Cr-1Mo-1W-VNbN steel forging through EBSD observation [J]. Int J. Press. Vessels Pip., 2009, 86: 570
31 Li G R, Li Y M, Wang F F, et al. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment [J]. J. Alloys Compd., 2015, 644: 750
32 Ge T S. Theoretical Basis of Solid Internal Friction [M]. Beijing: Peking University Press, 2014: 536
32 葛庭燧. 固体内耗理论基础 [M]. 北京: 北京大学出版社, 2014: 536)
33 Balluffi R W, Brokman A, King A H. CSL/DSC Lattice model for general crystalcrystal boundaries and their line defects [J]. Acta Metall., 1982, 30: 1453
34 Bishop G H, Chalmers B. A coincidence-ledge-dislocation description of grain boundaries [J]. Scr. Metall., 1968, 2: 133
35 Ashby M F. Results and consequences of a recalculation of the frank-read and the orowan stress [J]. Acta Metall., 1966, 14: 679
36 Zhang X, Cai Z P. Effect of magnetic field on the nanohardness of monocrystalline silicon and its mechanism [J]. JETP Lett., 2018, 108: 23
[1] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[2] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[3] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[4] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[5] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
[6] 滕跃飞,李应举,冯小辉,杨院生. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*[J]. 金属学报, 2015, 51(7): 844-852.
[7] 姬书得,温泉,马琳,李继忠,张利. TC4钛合金搅拌摩擦焊厚度方向的显微组织*[J]. 金属学报, 2015, 51(11): 1391-1399.
[8] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[9] 林英华, 雷永平, 符寒光, 林健. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50(12): 1513-1519.
[10] 林英华, 雷永平, 符寒光, 林健. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响[J]. 金属学报, 2014, 50(12): 1520-1528.
[11] 曹亮, 周亦胄, 金涛, 孙晓峰. 晶界角度对一种镍基双晶高温合金持久性能的影响*[J]. 金属学报, 2014, 50(1): 11-18.
[12] 王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.
[13] 王小勇,潘涛,王华,苏航,李向阳,曹兴忠. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J]. 金属学报, 2012, 48(4): 401-406.
[14] 王晓伟; 马继 . 低频脉冲磁场方法处理铁基非晶合金的内耗研究[J]. 金属学报, 2003, 39(11): 1215-1218 .
[15] 万菊林; 孙新军; 顾家琳; 陈南平 . Al-Cu-Mg-Zn-Cr合金热扭转变形中连续动态再结晶机理[J]. 金属学报, 1999, 35(10): 1031-1035 .