Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 697-703    
  论文 本期目录 | 过刊浏览 |
马氏体温变形超细化过共析钢
陈伟1;李龙飞1;孙祖庆1;张艳1;杨王玥2
1.北京科技大学新金属材料国家重点实验室; 北京 100083
2.北京科技大学材料科学与工程学院; 北京 100083
ULTRAFINED MICROSTRUCTURE OF HYPEREUTECTOID STEEL BY WARM DEFORMATION OF MARTENSITE
CHEN Wei1; LI Longfei1; SUN Zuqing1; ZHANG Yan1;YANG Wangyue2
1.State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
2.School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

陈伟 李龙飞 孙祖庆 张艳 杨王玥. 马氏体温变形超细化过共析钢[J]. 金属学报, 2009, 45(6): 697-703.
, , , , . ULTRAFINED MICROSTRUCTURE OF HYPEREUTECTOID STEEL BY WARM DEFORMATION OF MARTENSITE[J]. Acta Metall Sin, 2009, 45(6): 697-703.

全文: PDF(2838 KB)  
摘要: 

利用Gleeble 1500热模拟试验机进行单轴热压缩实验, 研究了含Al和不含Al两种过共析钢马氏体温变形和等温回火过程中的组织超细球化演变及超细球化组织的力学性能. 结果表明: 与马氏体等温回火相比, 马氏体温变形加快马氏体的分解动力学, 在较短的时间 内即获得超细化 (α+θ)复相组织. 温变形过程中的组织超细化演变主要经历渗碳体粒子的析出与粗化及铁素体基体的动态回复和动态再结晶; 而在等温回火过程中, 铁素体主要发生静态回复和晶粒长大, 并没有再结晶现象发生. 合金元素Al的加入在等温回火和温变形过程中均抑制马氏体的分解, 阻碍渗碳体粒子的粗化和铁素体晶粒的长大, 导致复相组织的细化. 同时, Al的加入使马氏体温变形和等温回火后所得超细化 (α+θ) 复相组织在不降低总延伸率的前提下, 强度得以明显提高.

关键词 过共析钢 马氏体 温变形 超细化 力学性能 Al添加    
Abstract

The continuous network of brittle proeutectoid carbide will formed along the grain boundaries when cooled slowly from austenite in hypereutectoid steels. Steels with such high--carbon content have been neglected in industry because of they are inherently brittle. By properly processed, such as hot and warm working (HWW), isothermal warm working (IWW), divorced eutectoid transformation (DET) and divorced eutectoid transformation with associated deformation (DETWAD), the steels will exhibit ultrafine microduplex structure with fine spheroidized cementite (θ) particles dispersed in fine--grained and equiaxed ferrite (α) matrix (grain size is less than 1 μm). This microduplex structure shows superplasticity at elevated temperature and exhibits better mechanical properties at room temperature. However, these processes are relatively complicated and should break the proeutectoid cementiets firstly. By warm deformation of martensite, a simple process and the ultrafined microstructure can be obtained easily. In the present work, the effects of Al on the microstructural ultra--refinement and mechanical properties of hypereutectoid steel during warm deformation of martensite as well as tempering of martensite were investigated by uniaxial hot compression simulation experiment. The results indicate that the warm deformation accelerates the martensite decomposition compared to tempering, leading to the formation of ultrafine (α+θ) microduplex structures. The microstructure evolution of martensite during warm deformation involves the precipitation and coarsen of cementite particles, and the dynamic recovery and dynamic recrystallization of ferrite, while tempering of martensite, the precipitation and coarsen of cementite particles, static recovery and grain growth of ferrite occurred, but no recrystallization of ferrite occurred. With the addition of Al, the decomposition of martensite is impeded during warm deformation and tempering, the microduplex structure is refined, and its strength is improved, while the elongation is not decreased.

Key wordshypereutectoid steel    martensite    warm deformation    ultrafine microstrcture    mechanical property    Al addition
收稿日期: 2008-11-18     
ZTFLH: 

TG142.1

 
基金资助:

教育部博士点基金项目20050008017和新金属材料国家重点实验室项目资助

作者简介: 陈伟, 男, 1979年生, 博士生

[1] Sherby O D. ISIJ Int, 1999; 39: 637
[2] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[3] Walser B, Sherby O D. Metall Trans, 1979; 10A: 1461
[4] Wadsworth J, Lin J H, Sherby O D. Met Technol, 1981; 8:190
[5] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[6] Carsi M, Vicente A F, Sherby O D, Penalba F, Ruano O A. Mater Sci Forum, 2007; 539–543: 4826
[7] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[8] Taleff E M, Bramfitt B L, Syn C K, Lesuer D R, Wadsworth J, Sherby O D. Mater Charact, 2001; 46: 11
[9] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[10] Fu W, Furuhara T, Maki T. ISIJ Int, 2004; 44: 171
[11] Tagashira S, Sakai K, Furuhara T, Maki T. ISIJ Int, 2000;40: 1149
[12] Chen W, Li L F, Yang W Y, Sun Z Q. Chin J Mater Res, 2008; 22: 374
(陈 伟, 李龙飞, 杨王玥 , 孙祖庆. 材料研究学报, 2008; 22: 374)
[13] Chen W,, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin,2008; 44: 1069
(陈伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2008; 44: 1069)
[14] Syn C K, Lesuer D R, Sherby O D. Metall Mater Trans,1994; 25A: 1481
[15] Lesuer D R, Syn C K, Whittenberger J D, Sherby O D. Metall Mater Trans, 1999; 30A: 1559
[16] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[17] Ueji R, Tsuji N, Minamino Y, Koizumi Y. Acta Mater, 2002; 50: 4177
[18] Xu S L, Li L F, Yang W Y, Sun Z Q. J Univ Sci Technol Beijing, 2007; 29: 901
(徐仕龙, 李龙飞, 杨王玥, 孙祖庆. 北京科技大学学报, 2007; 29: 901)
[19] Zhou J F, Jing T F, Gao Y W, Wang W, Zhao X, Song X Y. J Iron Steel Res, 2007; 19: 45
(周继锋, 荆天辅, 高聿为, 王威, 赵新, 宋新宇. 钢铁研究学报, 2007; 19: 45)
[20] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng, 2002; A334: 201
[21] Furuhara T, Kobayashi K, Maki T. ISIJ Int, 2004; 44: 1937
[22] Song R, Ponge D, Raabe D. Acta Mater, 2005; 52: 1075
[23] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005; 53: 845
[24] Furuhara T, Sato E, Mizoguchi T, Furimoto S, Maki T. Mater Trans, 2002; 43: 2455
[25] Harrigan M J, Sherby O D. Mater Sci Eng, 1971; 7: 177
[26] Zhou R F, YangWY, Sun Z Q, He J P. J Univ Sci Technol Beijing, 2004; 26: 512
(周荣锋, 杨王玥, 孙祖庆, 何建平. 北京科技大学学报, 2004; 26: 512)
[27] Leslie W C, Rauch G C. Metall Trans, 1978; 9A: 343
[28] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2003; 39:419
(李龙飞, 杨王玥, 孙祖庆. 金属学报, 2003; 39: 419)
[29] Frommeyer G, Jimenez J A. Metall Mater Trans, 2005;36A: 295
[30] Wang B Q, Song X Y, Peng H F. Mater Des, 2007; 28:562
[31] Zuidema B K, Subramaanyam, Leslie W C. Metall Trans,1987; 18A: 1629

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.