Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 585-591    
  论文 本期目录 | 过刊浏览 |
含Sr和Ca的Mg--12Zn--4Al--0.3Mn合金的显微组织和力学性能
万晓峰1 ;孙扬善1; 2 ;薛烽1; 2;白晶1; 2; 陶卫建3
1. 东南大学材料科学与工程学院; 南京 211189
2. 江苏省先进金属材料高技术研究重点实验室; 南京 211189
3. 江苏省镁合金材料工程技术研究中心; 南京 211224
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg–12Zn–4Al–0.3Mn ALLOY CONTAINING Sr AND Ca
WAN Xiaofeng1; SUN Yangshan1; 2; XUE Feng1; 2; BAI Jing1; 2; TAO Weijian3
1. School of Materials Science and Engineering; Southeast University; Nanjing 211189
2. Jiangsu Key Laboratory for Advanced Metallic Materials; Nanjing 211189
3. Jiangsu Engineering Research Center for Magnesium Alloys; Nanjing 211224
引用本文:

万晓峰 孙扬善 薛烽 白晶 陶卫建. 含Sr和Ca的Mg--12Zn--4Al--0.3Mn合金的显微组织和力学性能[J]. 金属学报, 2009, 45(5): 585-591.
. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg–12Zn–4Al–0.3Mn ALLOY CONTAINING Sr AND Ca[J]. Acta Metall Sin, 2009, 45(5): 585-591.

全文: PDF(2291 KB)  
摘要: 

以Mg--12Zn--4Al--0.3Mn(质量分数, %)为母合金, 制备了6种合金. 实验观察证实, Mg--12Zn--4Al--0.3Mn合金的铸态组织由α--Mg基体和沿晶界分布的准晶Q相组成. 在母合金中加入少量的Sr后, 亚稳准晶相转变为Mg32(Al, Zn)49平衡相以及Mg51Zn20共晶相. 在母合金中复合加入Sr与Ca后, 铸态组织出现了Al2Mg5Zn2共晶相. 随着Sr含量的增加, 合金室温和高温下的力学拉伸强度提高, 高温蠕变性能下降; Sr与Ca的复合加入使合金抗拉强度和塑性下降, 但高温屈服强度提高. 在\linebreak 175 ℃/70 MPa条件下, Mg--12Zn--4Al--0.2Sr--0.4Ca--0.3Mn合金表现出良好的高温抗蠕变性能.

关键词 镁合金 显微组织 力学性能 抗蠕变性能    
Abstract

Magnesium alloys have emerged as potentially good candidates for numerous applications, especially in automotive industry. Although the commonly used magnesium alloys, such as AZ91 and AM60 based on Mg–Al system have excellent castability, good room temperature mechanical properties and low cost, the application of these alloys has been limited to temperatures below 120℃ because of their poor heat resistance, especially creep property at elevated temperatures. Recent development reported that magnesium alloys with high zinc and low aluminum concentrations (Mg–Zn–Al based alloys) exhibit better creep properties than Mg–Al based alloys at temperatures above 150 ℃ and small amounts of alkaline–earth element (Sr and Ca) additions to the Mg–Zn–Al ternary alloys lead to further improvement of their mechanical properties. The purpose of the present paper is to describe the effects of calcium and strontium additions on the microstructure and mechanical properties of Mg–12Zn–4Al–0.3Mn based alloy. The results indicate that the as–cast microstructure of Mg–12Zn–4Al–0.3Mn alloy consists of the α–Mg matrix and a quasicrystalline Q phase at grain boundaries. Small amounts of Sr addition to the master alloy result in the transition of metastable Q phase to the equilibrium Mg32(Al, Zn)49 phase and the formation of binary eutectic phase Mg51Zn20. Another lamellar eutectic phase Al2Mg5Zn2 is observed in the as–cast microstructure when Ca combined with Sr is added to the base alloy, and its volume fraction increases with increase of Ca addition. The single addition of Sr causes the increase of tensile strength, but decrease of creep resistance at elevated temperatures. However, the creep properties are significantly improved if Sr is added in combination with Ca to the master alloy due to the formation of ternary eutectic phase Al2Mg5Zn2, which shows the high thermal stability at elevated temperatures. The alloy with composition of Mg–12Zn–4Al–0.2Sr–0.4Ca–0.3Mn exibits good creep resistance at 175℃and 70 MPa.

Key wordsmagnesium alloy    microstructure    mechanical properties    creep resistance
收稿日期: 2008-05-06     
ZTFLH: 

TG146.2

 
基金资助:

国家科技支撑计划项目2006BAE04B07和江苏省重大科技成果转化专项资金项目BA2005004资助

作者简介: 万晓峰, 男, 1980年生, 博士生

[1] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259
[2] Li P J, Zeng D B, Guo X T. Chin Rare Earths, 2002; 23(2): 63
(李培杰, 曾大本, 郭旭涛. 稀土, 2002; 23(2): 63)
[3] Luo A A. Int Mater Rev, 2004; 49: 13
[4] Zeng R C, Ke W, Xu Y B, Han E H, Zhu Z Y. Acta MetallSin, 2001; 37: 673
(曾荣昌, 柯伟, 徐永波, 韩恩厚, 朱自勇. 金属学报, 2001; 37: 673)
[5] Zhang Z, Couture A, Luo A. Scr Mater, 1998; 39: 45
[6] Zhang J, Guo Z X, Pan F S, Li Z S, Luo X D. Mater Sci Eng, 2007; A456: 43
[7] Zhang Z, Tremblay R. Canad Metall Quart, 2000; 39: 503
[8] Zhang Z, Tremblay R, Dub´e D. Mater Sci Eng, 2004; A385: 286
[9] Liu C M, Zhu X R, Zhou H T. Magnesium Phase Diagram. Changsha: Central South University Press, 2006:256
(刘楚明, 朱秀荣, 周海涛. 镁合金相图集. 长沙: 中南大学出版社, 2006: 256)
[10] Higashi I, Shiotani N, Uda M, Mizoguchi T, Katoh H. J Solid State Chem, 1981; 36: 225
[11] Bergman G, Waugh J L T, Pauling L. Acta Crystal–Logr, 1957; 10: 254
[12] Bourgeois L, Muddle B C, Nie J F. Acta Mater, 2001; 49: 2701
[13] Sun Y S, Zhang W M, Min X G. Acta Metall, 2001; 14: 330
[14] Vogel M, Kraft O, Dehm G, Arzt E. Scr Mater, 2001; 45: 517
[15] Takeuchi T, Murasaki S, Matsumuro A, Mizutani U. J Non–Cryst Solids, 1993; 914: 156
[16] Niikura A, Tsai A, Nishiyama N, Inoue A, Masumoto T. Mater Sci Eng, 1994; A1387: 181
[17] Petrov D V, Petzow G, Effenberg G. Aluminum–Magnesium–Zinc Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams. Weinheim: VCM, 1993: 57
[18] Henley C L, Elser V. Philos Mag, 1986; 53B: 59
[19] Wang S Q, Ye H Q. Philos Mag, 1991; 64B: 551
[20] Wei L Y, Dunlop G L, Westengen H. Metall Mater Trans, 1995; 26A: 1947

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.