Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 579-584    
  论文 本期目录 | 过刊浏览 |
Al--5.2Cu--0.4Mg--1.02Ag合金的时效析出行为研究
雷文平;  沈健 ; 毛柏平;  李俊鹏; 闫亮明
(北京有色金属研究总院; 北京 100088)
STUDY ON AGING PRECIPITATION BEHAVIOR OF Al–5.2Cu–0.4Mg–1.02Ag ALLOY
LEI Wenping; SHEN Jian; MAO Baiping; LI Junpeng; YAN Liangming
General Research Institute for Nonferrous Metals; Beijing 100088
引用本文:

雷文平 沈 健 毛柏平 李俊鹏 闫亮明. Al--5.2Cu--0.4Mg--1.02Ag合金的时效析出行为研究[J]. 金属学报, 2009, 45(5): 579-584.
, . STUDY ON AGING PRECIPITATION BEHAVIOR OF Al–5.2Cu–0.4Mg–1.02Ag ALLOY[J]. Acta Metall Sin, 2009, 45(5): 579-584.

全文: PDF(957 KB)  
摘要: 

研究了Al--5.2Cu--0.4Mg--1.02Ag合金在不同时效制度下的力学性能和显微组织, 并详细分析了合金的主要析出相Ω的形核与粗化, 同时提出了浓度台阶粗化机制. 结果表明: 合金的主要强化相是Ω相和θ'相. 欠时效时出现了大量细小的Ω相和少量的θ'相; 峰时效时Ω相和θ'相的体积分数大大增加, 且Ω相与基体呈半共格关系; 过时效时出现了球状的平衡θ'相, Ω相略为长大, 而θ'相的长度和厚度明显增大. Mg/Ag原子簇是时效初期Ω相的形核核心; Mg, Ag和Cu的浓度差异引起的台阶迁移是Ω相粗化的驱动力. 由于Mg和Ag原子在Ω相与基体界面存在时降低了晶格的畸变能, 使得Cu原子向Ω相迁移的速率受到限制, 因此Ω相能够在长时间下保持片状而不发生共格失稳.

关键词 Al--5.2Cu--0.4Mg--1.02Ag合金 力学性能 析出 Ω相 粗化    
Abstract

The mechanical properties and microstructures of Al–5.2Cu–0.4Mg–1.02Ag alloy during different aging processes were studied. The nucleation and coarsening of the main precipitation Ω phase were investigated, and the concentration ledge coarsening mechanism was proposed. The results show that the main precipitated phases are Ω phase and θ‘ phase A large number of fine Ω phase precipitates but a small amount of θ’ phase precipitates are found in the underaged alloy At peak–aging, the volume fraction of both Ω phase and θ‘ phase increases significantly and Ω phase issemi–coherent with the matrix. The equilibrium θ phase is found in subsequent overaging. During this time, Ω phase grows slowly but θ’ phase quickly both in length and thickness. Each of Mg/Ag co–clusters is used as a nucleation site of Ω phase in initial aging stage. The driving force for Ω phase coarsening comes from ledge migration caused by the atomic concentration difference of Mg, Ag and Cu. Since the segregation of Ag and Mg atoms in the interface between Ω phase and matrix reduces the misfit energy of lattice, the velocity of Cu atom moving to Ω phase is limited and Ω phase can keep its platelet shape well and the cohesion destabilization does not occur in long term aging.

Key wordsAl–5.2Cu–0.4Mg–1.02Ag alloy    mechanical properties    precipitation    &Omega    phase    coarsening
收稿日期: 2008-09-17     
ZTFLH: 

TG146.2

 
作者简介: 雷文平, 男, 1982年生, 硕士生
[1] Polmear I J, Couper M J. Metall Trans, 1988; 19A: 1027 [2] Lumiey R N, Polmear I J. Scr Mater, 2004; 50: 1227 [3] Vietz J T, Polmear I J. Inst Met, 1966; 94: 410 [4] Auld J H, Vietz J T. The Mechanism of Phase Transformation in Crystalline Solid. London: Inst of Metals, 1969: 77 [5] Garge A, Howe J M. Acta Metall Mater, 1991; 39: 1939 [6] Muddle B C, Polmear I J. Acta Mater, 1989; 37: 777 [7] Ringer S P, Yeung W, Muddle B C. Acta Mater, 1994; 42: 1715 [8] Ringer S P, Polmear I J. Acta Mater, 1996; 44: 1883 [9] Chang Y C, Howe J M. Metall Trans, 1993; 24A: 1461 [10] Zhu A W, Starke Jr E A, Shiflet G J. Scr Mater, 2005; 53: 35 [11] Tallor J A, Parker B A, Polmear I J. Met Sci, 1978; 12: 478 [12] Chester R J, Polmear I J. The Metallurgy of Light Alloys. London: Inst of Metals, 1983: 75 [13] Song M, Chen K H, Huang L P. Chin J Nonferrous Met, 2006; 16: 1313 (宋汶 , 陈康华, 黄兰萍. 中国有色金属学报, 2006; 16: 1313) [14] Reich L, Murayama M, Hono K. Acta Mater, 1998; 46:6053 [15] Huang B P, Zheng Z Q. Acta Mater, 1998; 46: 4381 [16] Gable B M, Zhu A W, Shiflet G J. Comput Coupling Phase Diagram Thermochem (2007), dio: 10.1016/j.calphad.2007.08.003 [17] Hutchinson C R, Fan X, Pennycook S J. Acta Mater, 2001;49: 2827
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.