Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1451-1455    
  论文 本期目录 | 过刊浏览 |
Delta工艺中Inconel 718合金中δ相的演变机制
张海燕;张士宏;程明
中国科学院金属研究所; 沈阳 110016
EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS
ZHANG Haiyan; ZHANG Shihong; CHENG Ming
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

张海燕 张士宏 程明. Delta工艺中Inconel 718合金中δ相的演变机制[J]. 金属学报, 2009, 45(12): 1451-1455.
, , . EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS[J]. Acta Metall Sin, 2009, 45(12): 1451-1455.

全文: PDF(1498 KB)  
摘要: 

针对Inconel 718合金的Delta工艺, 采用金相显微镜、扫描电镜和定量X射线衍射技术研究了变形温度为950℃、应变速率为0.005 s-1的等温压缩变形中δ相的演变机制. 结果表明: 在变形前的加热和保温阶段, 时效处理过程中晶内析出的颗粒/短棒状δ相全部溶解消失, δ相含量由8.14%降低为7.05%; 在变形过程中δ相发生了溶解, 含量由7.05%进一步降低为5.14%; 由于变形断裂和溶解断裂的综合作用, 片层/长针状δ相发生球化, 由片层/长针状δ相转变为颗粒/短棒状δ相; 在变形量最大的芯部, 片层/长针状δ相全部消失, 颗粒/短棒状δ相分布于晶内与晶界.

关键词 Inconel 718合金 Delta工艺 δ 变形 球化    
Abstract

Superalloy Inconel 718 is an important material used for aero–engine high temperature turbine disks. The grain refining of Inconel 718 becomes critical because of the improvement in the quality and reliability of aero–engine. Inconel 718 turbine disks are manufactured by multi–stage hot deformation processes, in which the recrystallized grain grows up in next passes. Therefore, it is difficult to obtain a uniform and refined microstructure by recrystallization refining. The δ phase in Inconel 718 can control grain size through the strong pinning effect. Thus, the Delta process (DP) has been applied for the forging of Inconel 718. In this paper, for the DP of Inconel 718, the evolution of δ phase during isothermal compression deformation at temperature of 950℃ and strain rate of 0.005 s−1, was studied by using optical microscope (OM), scanning electron microscope (SEM) and quantitative X–ray diffraction (XRD) technique. The results show that spherical or rod–shaped δ phase particles in the interior of grains precipitated in the aging treatment disappear during the heating and holding time before deformation, and thcontent of δ phase decreases from 8.14% to 7.05%. Dissolution of δ phase occurs during the deformation, and the content of phase decreases from 7.05% to 5.14%. The spheroidization of plate–like or needl–like δ phase takes place due to the effect of deformation and dissolution breakages, and the plate–like or needle-like δ phase transferrs to sphrical or rod–shaped δ phase. In the centre with the largest strain, the plate–like or needle–like δ phase disappears and spherical or rod–shaped δ hase appears in the interior of grains and grain boundais.

Key wordsInconel 718 alloy    Delta process     δ phase    deformation    spheroidization
收稿日期: 2009-06-02     
ZTFLH: 

TG146.1

 
基金资助:

国家自然科学基金---钢铁联合基金资助项目50834008

作者简介: 张海燕, 女, 1981年生, 博士生
[1] Hiroaki Y, Takeshi H, Tomohisa H, Sachihiro I, Hideaki S. In: C´esar de S´a J M A, Santos A D eds., Proc 9th Int Conf on Numerical Methods in Industrial Processes, Portugal: Porto, 2007: 987 [2] Zhao Y F. Master Thesis, Beijing Research Institute of Mechanical & Electrical Technology, 1999 (赵耀峰. 机械工业部北京机电研究所硕士学位论文, 1999) [3] Ruiz C, Obabueki A, Gillespie K. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds, Superalloys 1992, Warrendale, PA: TMS, 1992: 33 [4] Dix AW, Hyzak J M, Singh R . In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds, Superalloys 1992, Warrendale, PA: TMS, 1992: 23 [5] Bhowal P R, Schirra J J. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 2001: 193 [6] Lu H J, Yao C G, Zhang K F, Jia X C. Mater Mechanical Eng, 2003; 27(1): 15 (吕宏军, 姚草根, 张凯峰, 贾新朝. 机械工程材料, 2003; 27(1): 15) [7] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281 [8] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M. J Alloys Compd, 2009; 44: 341 [9] Schafrik R E, Ward D D, Groh J R. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 2001: 1 [10] Hu J P. PhD Dissertation, Steel Research Institute, Beijing, 1999 (胡建平. 钢铁研究总院博士学位论文, 北京, 1999) [11] Zhao D, Chaudhury P K. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 303 [12] Thomas A, El–Wahabi M, Cabrera J M, Prado J M. J Mater Process Technol, 2006; 177: 469 [13] Sundararaman M, Mukhopadhyay P, Banerjee S. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives , Warrendale, PA: TMS, 1994: 419 [14] Desvall´ees Y, Bouzidi M, Bois F, Beaude N. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 281 [15] Cai D Y, Zhang W H, Liu W C, Yao M, Sun G D, Chen Z L, Wang S G, Gao Y K. J Iron Steel Res, 2002; 14(6):61 (蔡大勇, 张伟红, 刘文昌, 姚枚, 孙贵东, 陈宗霖, 王少刚, 高玉魁. 钢铁研究学报, 2002, 14(6): 61) [16] Pan J S, Tong J M, Tian J M. Fundamentals of Material Science. Beijing: Tsinghua University Press, 2002: 473 (潘金生, 仝健民, 田健民. 材料科学基础. 北京: 清华大学出版社, 2002: 473)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[8] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[9] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[10] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[11] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[12] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[13] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.