|
|
基于机器学习的中厚板变形抗力模型建模与应用 |
冀秀梅1,2, 侯美伶2, 王龙1( ), 刘玠1, 高克伟2 |
1 上海大学 材料科学与工程学院 上海 200444 2 江阴兴澄特种钢铁有限公司 江阴 214400 |
|
Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning |
JI Xiumei1,2, HOU Meiling2, WANG Long1( ), LIU Jie1, GAO Kewei2 |
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Jiangyin Xingcheng Special Steel Co. Ltd., Jiangyin 214400, China |
引用本文:
冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
Xiumei JI,
Meiling HOU,
Long WANG,
Jie LIU,
Kewei GAO.
Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. Acta Metall Sin, 2023, 59(3): 435-446.
1 |
Zhang D H, Peng W, Sun J, et al. Key intelligent technologies of steel strip rolling process [J]. J. Iron Steel Res., 2019, 31: 174
|
1 |
张殿华, 彭 文, 孙 杰 等. 板带轧制过程中的智能化关键技术 [J]. 钢铁研究学报, 2019, 31: 174
|
2 |
Liu X H, Wang G D. Development of advanced technology in hot strip rolling [J]. Res. Iron Steel, 2000, (5): 1
|
2 |
刘相华, 王国栋. 热轧带钢新技术的发展 [J]. 钢铁研究, 2000, (5): 1
|
3 |
Li Y, Liu J X, Ke X T. Development and research of deformation resistance model in hot rolling process [J]. Res. Iron Steel, 2009, 37(6): 59
|
3 |
李 英, 刘建雄, 柯晓涛. 轧制变形抗力数学模型的发展与研究动态 [J]. 钢铁研究, 2009, 37(6): 59
|
4 |
Zhou J H, Guan K Z. Plastic Deformation Resistance of Metal [M]. Beijing: Machinery Industry Press, 1989: 212
|
4 |
周纪华, 管克智. 金属塑性变形阻力 [M]. 北京: 机械工业出版社, 1989: 212
|
5 |
Wang J, Wang X G, Yang H T, et al. A new mathematical model for predicting flow stress of X70HD under hot deformation [J]. J. Cent. South Univ., 2015, 22: 2052
doi: 10.1007/s11771-015-2728-y
|
6 |
Feng Y L, Li J, Ai L Q, et al. Deformation resistance of Fe-Mn-V-N alloy under different deformation processes [J]. Rare Met., 2017, 36: 833
doi: 10.1007/s12598-015-0678-z
|
7 |
Kingkam W, Zhao C Z, Li H, et al. Hot deformation and corrosion resistance of high-strength low-alloy steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 495
doi: 10.1007/s40195-018-0797-2
|
8 |
Wei L X, Zhang Y, Sun H, et al. Online cold rolling prediction based on improved OS-ELM [J]. Acta Metrol. Sin., 2019, 40: 111
|
8 |
魏立新, 张 宇, 孙 浩 等. 基于改进OS-ELM的冷连轧在线轧制力预报 [J]. 计量学报, 2019, 40: 111
|
9 |
Wang J, Wang Y, Xie H B, et al. Deformation resistance model based on measured data of hot rolling [J]. J. Plast. Eng., 2015, 22(1): 55
|
9 |
王 健, 王 宇, 谢红飙 等. 基于热连轧实测数据的金属材料变形抗力模型 [J]. 塑性工程学报, 2015, 22(1): 55
|
10 |
Li W G, Liu C, Zhao Y T, et al. Modeling deformation resistance for hot rolling based on generalized additive model [J]. J. Iron Steel Res. Int., 2017, 24: 1177
doi: 10.1016/S1006-706X(18)30015-3
|
11 |
Xie X Q, Li W G, Fu W P, et al. Deformation resistance model for hot-rolled strip based on measured data [J]. Metall. Ind. Autom., 2019, 43(2): 29
|
11 |
谢向群, 李维刚, 付文鹏 等. 基于实测数据的热轧带钢变形抗力模型 [J]. 冶金自动化, 2019, 43(2): 29
|
12 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
12 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
13 |
Wang T, Wan Z P, Sun Y, et al. Dynamic softening behavior and microstructure evolution of nickel base superalloy [J]. Acta Metall. Sin., 2018, 54: 83
doi: 10.11900/0412.1961.2017.00241
|
13 |
王 涛, 万志鹏, 孙 宇 等. 镍基变形高温合金动态软化行为与组织演变规律研究 [J]. 金属学报, 2018, 54: 83
|
14 |
Li M Q, Yao X Y, Luo J, et al. Modeling for flow stress of the nickel-based GH4169 superalloy at high temperature deformation [J]. Acta Metall. Sin., 2007, 43: 937
|
14 |
李淼泉, 姚晓燕, 罗 皎 等. 镍基高温合金GH4169高温变形流动应力模型研究 [J]. 金属学报, 2007, 43: 937
|
15 |
Phaniraj M P, Lahiri A K. The applicability of neural network model to predict flow stress for carbon steels [J]. J. Mater. Process. Technol., 2003, 141: 219
doi: 10.1016/S0924-0136(02)01123-8
|
16 |
Zhou J H, Guan K Z, Liu J, et al. An mathematical model of flow stress for hot strip mill [J]. J. Univ. Sci. Technol. Beijing, 1991, 13: 20
|
16 |
周纪华, 管克智, 刘 玠 等. 热轧碳钢流动应力的数学模型 [J]. 北京科技大学学报, 1991, 13: 20
|
17 |
Zhao M M, Qin S, Feng J, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel [J]. Acta Metall. Sin., 2020, 56: 960
doi: 10.11900/0412.1961.2019.00403
|
17 |
赵嫚嫚, 秦 森, 冯 捷 等. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响 [J]. 金属学报, 2020, 56: 960
doi: 10.11900/0412.1961.2019.00403
|
18 |
Ji X M, Wang L, Gao K W, et al. Application of ELM to predict plate rolling force [J]. J. Iron Steel Res., 2020, 32: 393
|
18 |
冀秀梅, 王 龙, 高克伟 等. 极限学习机在中厚板轧制力预报中的应用 [J]. 钢铁研究学报, 2020, 32: 393
|
19 |
Mei Y, Sun Q L, Yu L H, et al. Grain size prediction of aluminum alloy dies castings based on GA-ELM [J]. Acta Metall. Sin., 2017, 53: 1125
|
19 |
梅 益, 孙全龙, 喻丽华 等. 基于GA-ELM的铝合金压铸件晶粒尺寸预测 [J]. 金属学报, 2017, 53: 1125
|
20 |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70: 489
doi: 10.1016/j.neucom.2005.12.126
|
21 |
Deng C W, Huang G B, Xu J, et al. Extreme learning machines: New trends and applications [J]. Sci. China Inform. Sci., 2015, 58: 1
|
22 |
Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification [J]. IEEE Trans. Syst. Man Cybern., 2012, 42B: 513
|
23 |
Poudel P, Bae S H, Jang B. Comparison of different deep learning optimizers for modeling photovoltaic power [J]. J. Chosun Nat. Sci., 2018, 11: 204
|
24 |
Li W G, Yang W, Zhao Y T, et al. Modeling hot strip rolling process under framework of generalized additive model [J]. J. Cent. South Univ., 2019, 26: 2379
doi: 10.1007/s11771-019-4181-9
|
25 |
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning[J]. J. Iron Steel Res., 2019, 31: 805
|
25 |
马 威, 李维刚, 赵云涛 等. 基于深度学习的热连轧轧制力预测 [J]. 钢铁研究学报, 2019, 31: 805
|
26 |
Liu D H, Li J H, Peng Y, et al. Comprehensive evaluation of sintering basic characteristics of iron ore based on grey relational analysis [J]. J. Iron Steel Res. Int., 2019, 26: 691
doi: 10.1007/s42243-019-00259-1
|
27 |
Zhang T, Zhang Z H, Tian Y, et al. Research and application of deep learning method for plate ultra fast cooling [J]. J. Northeastern Univ. (Nat. Sci.), 2019, 40: 635
|
27 |
张 田, 张子豪, 田 勇 等. 深度学习在中厚板轧后超快速冷却系统中的研究与应用 [J]. 东北大学学报(自然科学版), 2019, 40: 635
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|