Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1446-1450    
  论文 本期目录 | 过刊浏览 |
X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究
韩利战; 陈睿恺; 顾剑锋; 潘健生
上海交通大学材料科学与工程学院; 上海激光制造与材料改性重点实验室; 上海 200240
BEHAVIOR OF AUSTENITE GRAIN GROWTH IN X12CrMoWVNbN10-1-1 FERRITE HEAT-RESISTANT STEEL
HAN Lizhan; CHEN Ruikai; GU Jianfeng; PAN Jiansheng
School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai Key Laboratory of Materials Laser Processing and Modification; Shanghai 200240
引用本文:

韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
, , , . BEHAVIOR OF AUSTENITE GRAIN GROWTH IN X12CrMoWVNbN10-1-1 FERRITE HEAT-RESISTANT STEEL[J]. Acta Metall Sin, 2009, 45(12): 1446-1450.

全文: PDF(2581 KB)  
摘要: 

将超超临界发电机组高中压转子材料X12CrMoWVNbN10-1-1铁素体耐热钢试样在1010-1200℃之间经5-1200 min等温奥氏体化处理, 通过测量处理后的奥氏体晶粒尺寸对其奥氏体晶粒长大规律进行了研究. 结果表明: 当奥氏体化温度低于1050℃时, 晶粒长大表现为正常长大过程, 即使等温1200 min, 晶粒仍能保持均匀细小; 1050-1120℃之间等温奥氏体化处理, 奥氏体晶粒出现异常长大现象;当奥氏体化温度高于1150℃时, 奥氏体晶粒以较大的速率正常长大. 拟合实验结果,得出了不同温度下奥氏体晶粒长大的动力学方程, 并确定了获得不同尺寸奥氏体晶粒所对应的温度和时间参数.

关键词 奥氏体晶粒 异常晶粒长大 晶界迁移激活能 铁素体耐热钢    
Abstract

The kinetic law of austenite grain growth in the X12CrMoWVNbN10–1–1 ferrite heat–resistant steel, which has been used as the high and medium pressure rotor of ultra–supercritical generating units, has been studied by quantitatively measurement of the austenite grain size after austenitized from 1010 ℃ to 1200 ℃ with holding time from 5 to 1200 min. The results show that the grain grows in a normal grain growth (NGG) mode when the austenitizing temperature is lower than 1050 ℃, and the homogeneous small grains can be obtained even the holding time reaches 1200 min. When the austenitizing emperature lies between 1050 ℃and 1120 ℃with different holding tme, the bnormal grain growth (AGG) can be bserved. At even higher temperature than 1150 ℃, the austenite grains grow rapidly with a NGG mode. The austenitizintemperature and holdng time are thus determined or different austeize grain states, and the parameters in te NGG knetic equation are fit.

Key wordsaustenite grain    abnormal grain growth    boundary migration activation energy    ferrite heat-resistant steel
收稿日期: 2009-05-31     
ZTFLH: 

TG115.21

 
基金资助:

上海市科学技术委员会重大科技攻关资助项目08DZ1100302

作者简介: 韩利战, 男, 1970年生, 博士生

[1] Hu P. Electr Power Constr, 2005; 26(6): 26
(胡 平. 电力建设, 2005;  26 (6): 26)
[2] Masluyama F. ISIJ Int, 2001; 41: 612
[3] Bose S C, Singh K, Ray A K, Ghosh R N. Mater Sci Eng, 2008; A476: 257
[4] Sikka V K. In: Davies J W, Michel D J eds., Proc Topical Conf on Ferritic Alloys for Use in Nuclear Energy Technologies, Littleton: AIME, 1984: 317
[5] Cerjak H, Letofsky E, Staubli M. In: Lecomte–Beckers J, Schubert F, Ennis P J eds., Proc 6th Li`ege Conf on Materials for Advanced Power Engineering 1998, Part I, Julich, Germany, Forschungszentrum, 1998: 401
[6] Ennis P J, Quandakkers W J. In: Strang A, Banks W M, Conroy R D, McColvin G M, Neal J C, Simpson S eds., Parson 2000 for Advanced Marterials for 21st Century Turbines and Power Plant Proc 5th International Charles Parsons Turbine Conf, London: Cambridge, 2000: 265
[7] Kubon Z, Foldyanna V, Voderak V. In: Strang A, Banks WM, Conroy R D, Goulette M J eds., Proc 4th Int Charles Parsons Turbine Conf, UK: Maney Publishing, 1997: 309
[8] Lundin L, Fallman S, Andren H O. Mater Sci Technol, 1997; 13: 233
[9] Orr J, Woolard L. In: Strang A, Gooch D J eds., Proc Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels, UK: Institute of Materials, 1997: 53
[10] Ennis P J. In: Strang A, Banks W M, Conroy R D, Goulette M J eds., Proc 4th Int Charles Parsons Turbine Conf, UK: Maney Publishing, 1997: 296
[11] Kimura M, Yamaguchi K, Hayakawa M, Kobayashi K, Kanazawa K. Int J Fatigue, 2006; 28: 300
[12] Kan D T, Ye G B. Materials and Heat Treatment of Heavy Casting and Forging, Beijing: Longmen Books, 1998: 139
(康大韬, 叶国斌. 大型铸锻件材料及热处理. 北京: 龙门书局, 1998: 139)
[13] Garci´a de Andr´es C, Bartolom´e M J, Capdevila C, San Mart´?n D, Caballero F G, L´opez V. Mater Charact, 2001; 46: 389
[14] Cotterill P, Mould P R. Recrystallization and Grain Growth in Metals. London: Surrey University Press, 1976: 271
[15] Cahn R W, Haasen P. Physical Metallurgy. New York: North–Holland, 1996: 2474
[16] Mao W M, Zhao X B. Recrystallizatin and Growth of Grain in Metal. Beijing: Metallurgy Industry Press, 1994: 282
(毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 282)
[17] Kutz S K, Carpay F M A. J Appl Phys, 1980; 51: 5725
[18] Hu G X, Cai X, Rong Y H. Foundations of Material Science (2nd Edi), Shanghai: Shanghai Jiaotong University Press, 2000: 204
(胡庚祥, 蔡 珣, 戎咏华. 材料科学基础(第二版). 上海: 上海交通大学出版社, 2000: 204)

[1] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[2] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[3] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[4] 由洋 王学敏 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J]. 金属学报, 2012, 48(11): 1290-1298.
[5] 彭志方 党莹樱 彭芳芳. 9%-12%Cr铁素体耐热钢持久性能评估方法的研究[J]. 金属学报, 2010, 46(4): 435-443.
[6] 尹云洋 杨王玥 李龙飞 孙祖庆 王西涛. 基于过冷奥氏体动态相变的热轧TRIP钢组织控制  I.原始奥氏体晶粒尺寸[J]. 金属学报, 2010, 46(2): 155-160.
[7] 梁益龙;雷旻;钟蜀辉;江山. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J]. 金属学报, 1998, 34(9): 950-958.