Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1325-1329    
  论文 本期目录 | 过刊浏览 |
高密度脉冲电流处理改善1Cr13Mn13钢力学性能
赵远云; 王宝全; 郭敬东
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
IMPROVEMENT OF MECHANICAL PROPERTIES OF STEEL 1Cr13Mn13 BY ELECTROPULSING WITH HIGH DENSITY
ZHAO Yuanyun; WANG Baoquan; GUO Jingdong
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

赵远云 王宝全 郭敬东. 高密度脉冲电流处理改善1Cr13Mn13钢力学性能[J]. 金属学报, 2009, 45(11): 1325-1329.
, , . IMPROVEMENT OF MECHANICAL PROPERTIES OF STEEL 1Cr13Mn13 BY ELECTROPULSING WITH HIGH DENSITY[J]. Acta Metall Sin, 2009, 45(11): 1325-1329.

全文: PDF(1168 KB)  
摘要: 

研究了普通热处理工艺以及在此基础上进行高密度脉冲电流(EP)处理对 1Cr13Mn13钢力学性能的影响. 结果表明, 普通 “退火”(AF)或者“固溶淬火+回火” (SOT)热处理工艺对1Cr13Mn13钢力学性能的影响比较有限; 而在SOT处理的基础上, 对样品进行一定强度的EP处理, 可以使材料的抗拉强度由(1250±10) MPa增加到1400 MPa, 延伸率由(20±1)\%提高到53%. 在EP处理过程中, 马氏体相在快速升温过程中转变成奥氏体相, 新生成的奥氏体相在随后的快速降温过程中又转变成为比初始马氏体相更细小的马氏体板条结构. 这一细化结构在提高材料抗拉强度的同时, 也大幅度提高了材料的塑性.

关键词 1Cr13Mn13钢热处理脉冲电流力学性能马氏体细化    
Abstract

Steel 1Cr13Mn13 was treated by electropulsing (EP) with high density after annealing+furnace cooling (AF) or solution+oil quenching+tempering (SOT). Tensile experiments show that the mechanical properties of the sample treated by SOT+EP process with a maximum current intensity about 8.46 kA/mm2 were greatly improved, compared with the sample only treated by SOT process, its tensile strength and elongation increased from (1250±10) MPa and (20±1)\% to 1400 MPa and 53%, respectively. Metallographs show that the equiaxed grains formed under high temperature solid solution treatment were remained in both the SOT and SOT+EP samples. But the coarse lamellar martensite in the SOT sample was greatly refined after EP treatment. As the samples were treated by EP treatment, they successively underwent a rapidly “heating-cooling” process with a heating time less than 0.001 s and a cooling time less than 0.6 s, resulting in a successive phase transformation of α´γα´. The lamellar α´ martensites formed during rapidly cooling process have more refined size than that of the primary martensite laths, which further enhanced the tensile ductility and tensile strength of steel 1Cr13Mn13. Moreover, the maximum value of current intensity for each EP treatment can also influence the mechanical properties of the samples by controlling the amount of the α´ phase in the transformation. A higher current intensity usually produces much more amount of α´ phase with smaller lamellar size and the mechanical properties of the samples are more improved. But if the maximum current intensity is much higher than an optimal range about 8.30-8.46 kA/mm2, the sample is overheated and the mechanical properties will be lowered.

Key wordssteel 1Cr13Mn13    heat treatment    electropulsing    mechanical property    martensite refinement
收稿日期: 2009-04-28     
ZTFLH: 

TG156.9

 
基金资助:

国家重点基础研究发展计划资助项目2004CB619306

作者简介: 赵远云, 男, 1980年生, 博士生

[1] Troitskii O A, Likhtman V I. Dokl Akad Nauk SSSR, 1963; 148: 332
[2] Sprecher A F, Mannan S L, Conrad H. Scr Metall, 1983; 17: 769
[3] Conrad H, Karam N, Mannan S, Sprecher A F. Scr Metall, 1988; 22: 235
[4] Conrad H. Mater Sci Eng, 2000; A287: 227
[5] Conrad H. Mater Sci Eng, 2000; A287: 276
[6] Yang D, Conrad H. Intermetallics, 2001; 9: 943
[7] Zhang W, Sui M L, Hu K Y, Li D X, Guo X N, He G H, Zhou B L. J Mater Res, 2000; 15: 2065
[8] Zhou Y Z, Zhang W, Wang B Q, He G H, Guo J D. J Mater Res, 2002; 17: 2105
[9] Wang X L, Guo J D, Wang Y M, Wu X Y, Wang B Q. Appl Phys Lett, 2006; 89: 061910
[10] Conrad H, Sprecher A F. In: Nabarro F R N ed., Dislocations in Solids. Amsterdam: Elsevier Science Publishers, 1989: 497
[11] Cui Z Q. Metallography & Heat Treatment. Beijing: China Machine Press, 2002: 324
(崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2000: 324)

[12] Zhao W S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005
(赵伟松. 博士学位论文, 中国科学院金属研究所, 沈阳, 2005)

[13] Zhao W S, Zhang W, Guo J Y, Wang B Q, Guo J D, Lu K. J Mater Sci Technol, 2006; 22: 190

[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.