Please wait a minute...
金属学报  2007, Vol. 43 Issue (10): 1077-1081     
  论文 本期目录 | 过刊浏览 |
合金化元素Zn对GW系镁合金组织和力学性能的影响
李杰华;介万奇;杨光昱
西北工业大学材料学院; 西安710072
西北工业大学材料学院
引用本文:

李杰华; 介万奇; 杨光昱 . 合金化元素Zn对GW系镁合金组织和力学性能的影响[J]. 金属学报, 2007, 43(10): 1077-1081 .

全文: PDF(531 KB)  
摘要: 本文通过光学显微镜、X射线衍射仪、扫描电镜等分析研究了合金化元素Zn对GW系镁合金砂型铸造组织和性能的影响。研究结果表明:GW系镁合金的结构类型和Mg(六方相)相同,Gd溶入Mg的晶格形成置换固溶体,组织中存在着Mg24Y5第二相。加入合金化元素Zn后,组织发生较大变化,形成雪花状的枝晶,而且在固溶以及时效处理过程中,其形貌没有消失,只是有所溶解。实验合金GWZ721在砂型铸造工艺条件下热处理后的室温力学性能优良,抗拉强度达到250MPa,屈服强度甚至达到235MPa,远远优于商品镁合金AZ91C(85 MPa)与ZK51 A(140 MPa),而且塑性也比较好,最高达到6.2%。砂型铸造试验合金GWZ721热处理后的高温瞬时拉伸性能也相当优良,在200℃、250℃和300℃时,实验合金的抗拉强度分别达到225MPa、220MPa和205MPa。抗拉强度和屈服强度随着温度的升高均有所下降,但下降不多,延伸率则随着温度的升高有所上升。通过向GW系铸造镁合金添加合金化元素Zn,改善了实验合金GW72的组织,实验合金GW721在保证提高力学性能的前提下降低了成本,是一种较有前途的高端镁合金材料。
关键词 显微组织力学性能GW系铸造镁合金    
Abstract:The influence of alloying element Zn on the microstructures and properties of GW series sand-cast magnesium alloys was investigated in this paper by using optical microscopy, X-ray diffractometry, scanning electron microscopy. The results show that: the structure type of GW series magnesium alloys was similar to pure magnesium (h.c.p). Gd was resolved in the magnesium alloy. At the same time, Mg24Y5 was also founded in the GW series magnesium alloys. When alloying element Zn was added into the GW series magnesium alloys, the great changes about the microstructures were taken place. The snow-liked form grain formed, and didn’t disappear during the process of annealing, only just resolved in the magnesium alloy. Experimental alloys GWZ721 after Hot-treatment showed the outstanding mechanical properties at room temperature. The ultimate tensile strength reached 250MPa. Moreover, the yield strength reached 235MPa, far better than those of commercial magnesium AZ91C (85MPa) and ZK51A (140MPa). The elongation also reached 6.2% at most. The most important was that Experimental alloys GWZ721 after Hot-treatment also showed the outstanding mechanical properties at elevate room temperature. The ultimate tensile strength at 200℃、250℃and 300℃ was 225MPa、220MPa and 205MPa, respectively. The ultimate tensile strength and the yield strength decreased when the temperature increased, however, the elongation increased in step with the temperature. The microstructures of experimental alloys GW72 was improved when alloying element Zn was added into the GW series magnesium alloys. The cost of experimental alloys GW721 was cut down on the condition that the outstanding mechanical properties were realized. It can conclude that experimental alloys GW721was a kind of promising high-quality magnesium alloys.
Key wordsMicrostructures    Mechanical properties    GW series cast magnesium alloys    annealing
收稿日期: 2007-02-12     
ZTFLH:  TG146.4  
[1]Grobner J,Schmid-Fetzer R.J Alloy Compd,2001;320: 296
[2]Buch F V,Lietzau J,Mordike B L,Pisch A,Schmid-Fetzer R.Mater Sci Eng,1999;A263:1
[3]Guo X T,Li P J,Zeng D B.Chin Rare Earth,2002;23(2): 63 (郭旭涛,李培杰,曾大本.稀土,2002;23(2):63)
[4]Nikitina N I.J Alloy Compd,1998;279:166
[5]Zhang X M,Chen J M,Deng Y L,Xiao Y,Jiang H,Deng Z Z.Chin J Nonferrous Met,2006;16:219 (张新明,陈健美,邓运来,肖阳,蒋浩,邓桢桢.中国有色金属学报,2006;16:219)
[6]Xiao Y,Zhang X M,Chen J M,Jiang H.Chin J Nonfer- rous Met,2006;16:709 (肖阳,张新明,陈健美,蒋浩,中国有色金属学报,2006;16:709)
[7]Peng Q M,Wang J L,Wu Y M,Wang L M.Mater Sci Eng,2006;A433:133
[8]He S M,Zeng X Q,Peng L M,Gao X,Nie J F,Ding W J.J Alloy Compd,2006;421:309
[9]Nie J F,Gao X,Zhu S M.Scr Mater,2005;53:1049
[10]Li W X.Magnesium and Magnesium Alloy.Changsha: Central South University Press,2005:51 (黎文献.镁及镁合金.长沙:中南大学出版社,2005:51)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.