Please wait a minute...
金属学报  2006, Vol. 42 Issue (8): 785-791     
  论文 本期目录 | 过刊浏览 |
Sb添加对(β+γ)双相Co-Ni-Al形状记忆合金马氏体相变和磁性的影响
罗丰华; 陈嘉砚; 刘浪飞;及川胜成;石田清仁
中南大学粉末冶金研究院功能材料研究所
Influence of Sb addition on Martensitic and Magnetic Transformation in β+γ Two-phase Based Co-Ni-Al Shape Memory Alloy
Fenghua Luo
中南大学粉末冶金研究院功能材料研究所
引用本文:

罗丰华; 陈嘉砚; 刘浪飞; 及川胜成 ; 石田清仁 . Sb添加对(β+γ)双相Co-Ni-Al形状记忆合金马氏体相变和磁性的影响[J]. 金属学报, 2006, 42(8): 785-791 .
, , , , . Influence of Sb addition on Martensitic and Magnetic Transformation in β+γ Two-phase Based Co-Ni-Al Shape Memory Alloy[J]. Acta Metall Sin, 2006, 42(8): 785-791 .

全文: PDF(2154 KB)  
摘要: 利用OM, SEM, EDX, XRD, DSC和VSM研究了用Sb替代Al对Co41Ni32Al27合金马氏体相变和磁性的影响. 结果表明Co41Ni32Al26Sb1合金仍然生成L10型马氏体, 其马氏体相变温度和Curie点与淬火温度成正比关系, 淬火温度每升高10 K, 马氏体相变温度约提高9 K, 而Curie点约提高7.5 K. 相同淬火温度下Co41Ni32Al26Sb1合金的马氏体相变温度比Co41Ni32Al27合金约高70 K, 而Curie点也高出15 K. Co41Ni32Al26Sb1在1623 K热处理时出现共晶组织,发生部分熔化现象. 特别重要的是Co41Ni32Al26Sb1合金的马氏体相变温度范围大幅度缩小, 为20—28 K, 只有Co41Ni32Al27合金的一半, 有利于获得大磁致应变. 用平均s+d总电子浓度和平均磁价电子数分别解释了马氏体相变温度和Curie点的变化.
关键词 Co-Ni-Al-Sb合金马氏体相变Curie    
Abstract:Influence of 1 at.% Sb addition on martensitic transformation and Curie point of Co41Ni32Al27 alloy is investigated for the first time by optical metallograph, SEM, EDX, XRD, DSC and VSM methods. The results show that martensitic crystal structure of Co41Ni32Al26Sb1 alloy is still L10 type. Both martensitic transformation temperature Tm and Curie point Tc is linear relation to quenching temperature. Tm increase 9K and Tc increase 7.5K for every 10K increasing in quenched temperature. Quenched from same temperature, Tm of Co41Ni32Al26Sb1 alloy is higher than that of Co41Ni32Al27 alloy by 70K,meanwhile Tc is higher by 15K. The melting point of Co-Ni-Al alloy decreases by the Sb addition, eutectic structure appears in Co41Ni32Al26Sb1 alloy annealed at 1623K, indicated that the alloy is partial melted. The martensitic transformation temperature range of Co41Ni32Al26Sb1 alloy is 20-28K, less than half that of Co41Ni32Al27 alloy. This is a very important result to benefit the achievement of large magnetic field induced strain on Co-Ni-Al based alloy. The results of Tm and Tc were explained by total average s+d electron concentration and magnetic valence number Zm separately.
Key wordsCo-Ni-Al-Sb alloy    martensitic transformation    Curie point
收稿日期: 2005-11-14     
ZTFLH:  TG139.6  
[1]Oikawa K,Wulff L,Iijima T,Gejima F,Ohmori T,Fujita A,Fukamichi K,Kainuma R,Ishida K.Appl Phys Lett,2001;79:3290
[2]Oikawa K,Ota T,Gejima F,Ohmori T,Kainuma R,Ishida K.Mater Trans JIM,2001;42:2472
[3]Litvinov V S,Arkhangel'skaya A A.Phys Met Metall,1978;44(4):131
[4]Kainuma R,Ise M,Jia C C,Ohtani H,Ishida K.Intermetallics,1996;4(Suppl.):151
[5]Karaca H E,Karaman I,Lagoudas D C,Maier H J,Chumlyakov Y I.Scr Mater,2003;49:831
[6]Tanaka Y,Ohmori T,Oikawa K,Kainuma R,Ishida K.Mater Trans JIM,2004;45:427
[7]Morito H,Fujita A,Fukamichi K,Kainuma R,Ishida K.Appl Phys Lett,2002;81:1657
[8]Sozinov A,Likhachev A A,Lanska N,Ullakko K.Appl Phys Lett,2002;80:1746
[9]Brown P J,Ishida K,Kainuma R,Kanomata T,Neumannn K U,Oikawa K,Ouladdiaf B,Ziebeck K R A.J Phys:Condens Matter,2005;17:1301
[10]Luo F H,Oikawa K,Ishida K.Acta Metall Sin,2005;41:680(罗丰华,及川胜成,石田清仁.金属学报,2005;41:680)
[11]Sutou Y,Imano Y,Omori T,Kainuma R,Ishida K,Oikawa K.Appl Phys Lett,2004;85:4358
[12]Enami K,Nenno S.Metall Trans,1971;2:1487
[13]Schryvers D.J Phys IV,Colloq,1995;5C:225
[14]Hamilton R F,Sehitoglu H,Efstathiou C,Majier H J,Chumlyakov Y,Zhang X Y.Scr Mater,2005;53:131
[15]Ishida K,Kainuma R,Ueno N,Nishizawa T.Metall Trans,1991;22A:441
[16]Fujita A,Morito H,Kudo T,Fukamichi K,Kainuma R,Ishida K,Oikawa K.Mater Trans JIM,2003;44:2180
[17]Luo F H,Chen K H,Oikawa K,Ishida K.Heat Treat Met,2005;30(9):1(罗丰华,陈康华,及川胜成,石田清仁.金屑热处理,2005;30(9):1)
[18]Wuttig M,Liu L H,Tsuchiya K,Jame R D.J Appl Phys,2000;87:4707
[19]Oikawa K,Imano Y,Chernenko V A,Luo F H,Omori T,Sutou Y,Kainuma R,Kanomata T,Ishida K.Mater Trans JIM,2005;46:734
[20]Oikawa K,Omori T,Kainuma R,Ishida K.J Magn Magn Mater,2004;272-276:2043
[21]Williams A R,Moruzzi V L,Malozemoff A P,Terakura K.IEEE Trans Magn,1983;19:1983
[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[7] 郭雨静, 鲍皓明, 符浩, 张洪文, 李文宏, 蔡伟平. 金属Rb纳米溶胶的超声乳化制备及点火特性[J]. 金属学报, 2022, 58(6): 792-798.
[8] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[9] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[12] 樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
[13] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[14] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[15] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.