Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 871-879    DOI: 10.11900/0412.1961.2020.00291
  研究论文 本期目录 | 过刊浏览 |
SEBM成形片状极小曲面点阵材料的力学性能
樊永霞, 王建, 张学哲, 王建忠, 汤慧萍()
西北有色金属研究院 金属多孔材料国家重点实验室 西安 710016
Mechanical Property of Shell Minimal Surface Lattice Material Printed by SEBM
FAN Yongxia, WANG Jian, ZHANG Xuezhe, WANG Jianzhong, TANG Huiping()
State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
引用本文:

樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
Yongxia FAN, Jian WANG, Xuezhe ZHANG, Jianzhong WANG, Huiping TANG. Mechanical Property of Shell Minimal Surface Lattice Material Printed by SEBM[J]. Acta Metall Sin, 2021, 57(7): 871-879.

全文: PDF(15992 KB)   HTML
摘要: 

以球形Ti-6Al-4V合金粉末为原料,采用电子束选区熔化(selective electron beam melting,SEBM)技术制备了片状三周期极小曲面(triply periodic minimal surface,TPMS)点阵材料以及桁架点阵材料,研究了点阵材料的成形质量、显微组织及压缩性能。成形结果表明,SEBM成形片状TPMS和桁架点阵材料尺寸精度在电子束束斑直径范围之内,与计算机辅助设计(computer aided design,CAD)模型具有较好的几何一致性;SEBM成形Ti-6Al-4V点阵材料的微观组织为原始粗大β柱状晶,晶内为细小正交的α'马氏体组织以及细小α + β组织;TPMS点阵材料较桁架点阵材料表现出优越的力学性能,其中,金刚石(D)型点阵材料在TPMS点阵材料中具有最高的压缩强度,其比抗压强度可达146.9 MPa/(g·cm-3),远高于相同相对密度下桁架点阵材料的最高比抗压强度119.6 MPa/(g·cm-3)。

关键词 三周期极小曲面电子束选区熔化Ti-6Al-4V点阵材料    
Abstract

Lightweight and strong lattice materials are suitable for a wide range of applications in aerospace, automotive, biomedical, shipbuilding, and a variety of other significant industries. A class of mathematically defined surfaces that exhibit three-dimensional (3D) periodicity, zero mean curvature, and large surface area is the triply periodic minimal surface (TPMS). Inspired by natural systems, such as biological cubic membranes, sea urchins, and butterfly wing scales, TPMS lattice material is composed of continuous and smooth shells, allowing for decreased stress concentration by comparison with strut-based lattice material. In this study, strut-based lattice materials, namely octet-truss (O) and tetrakaidecahedral (T), shell-based lattice materials, namely Diamond (D); Gyroid (G); and I-WP (I), and Primitive (P) lattice materials, were rationally designed and manufactured using Ti-6Al-4V alloy powder by selective electron beam melting (SEBM) process. The discrepancies between the design and manufactured diameters or thicknesses, optical microstructures, and mechanical properties of these lattice materials have been defined in detail. The results showed that the variations between the design and manufactured diameter or thickness of SEBM manufactured lattice materials were smaller than the value of the electron beam spot diameter, showing good geometric consistency with the original computer-aided design models. Due to the high thermal gradients and rapid cooling rates observed in the SEBM process, the resulting microstructure of lattice materials was columnar prior β grains, which were parallel to the build direction, where inside the columnar β grains were α + β and martensite α' platelets. The key finding is that TPMS lattice materials exhibit superior mechanical properties compared to strut-based lattice materials in compressive strength, elastic modulus, and plasticity, owning to their smooth and continuous surface. Among the SEBM manufactured shell-based lattice materials, the mechanical properties of type D lattice materials perform best. Moreover, the specific compressive strength of SEBM manufactured shell-based lattice materials reached 146.9 MPa/(g·cm-3), which is much higher than that of strut-based lattice materials with 119.6 MPa/(g·cm-3) in the same relative density. These properties make TPMS or shell-based lattice materials potential candidates to be applied as parts in aerospace and/or biomedical industries.

Key wordstriply periodic minimal surface    selective electron beam melting    Ti-6Al-4V    lattice material
收稿日期: 2020-08-06     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51829401、51627805)
作者简介: 樊永霞,女,1992年生,硕士
图1  结构单胞图(a) octet-truss (O) (b) tetrakaidecahedron (T)(c) diamond (D) (d) gyroid (G) (e) I-wrapped package (I) (f) primitive (P)
图2  电子束选区熔化(SEBM)成形Ti-6Al-4V点阵材料的宏观形貌(a) O (b) T (c) D (d) G (e) I (f) P
图3  SEBM成形Ti-6Al-4V三周期极小曲面(TPMS)点阵材料表面形貌的SEM像(a) D (top) (b) G (top) (c) I (top) (d) P (top) (e) G (side) (f) G (bottom)
SampleRalative densityThickness / μmYield strengthσEε
DesignedPrintedDesignedPrintedMPaMPaMPa%
O10.130.1653054027.832.81036.85.1
O20.210.2070068046.553.31684.84.7
O30.260.2580072062.778.22234.14.6
O40.350.3094083096.7117.83036.67.6
T10.150.1482076021.223.4900.04.1
T20.200.1894089043.650.21733.04.8
T30.250.221120106061.271.42300.74.2
T40.300.261260118084.3100.13414.16.1
D10.200.2144056095.5117.43329.110.5
D20.250.22540530103.8122.33199.08.9
D30.300.26660650113.0138.73899.810.1
D40.350.30820670135.9171.94461.58.9
D50.400.36880750194.8234.34722.99.3
G10.200.1854052063.479.02281.09.9
G20.250.2166054074.694.92745.710.2
G30.300.2680064097.9127.43208.010.6
G40.330.28900740116.5150.33600.310.3
G50.350.30940770128.6162.93920.010.8
P10.130.1444051071.380.73124.26.2
P20.200.1870068077.883.42212.37.8
P30.250.2288084082.298.42624.18.4
P40.300.261060940106.0132.03256.39.9
P50.350.3112201050136.3173.44200.19.5
I10.170.2044052033.638.11232.17.7
I20.200.2252056056.364.81937.28.4
I30.250.2464061074.890.12578.29.4
I40.300.29820720101.2119.63443.28.8
I50.350.33980890121.3156.43568.39.8
表1  SEBM成形Ti-6Al-4V点阵材料设计和打印后形态特征参数及压缩性能
图4  SEBM成形Ti-6Al-4V金刚石(D)型TPMS点阵材料显微组织的OM像
图5  SEBM成形Ti-6Al-4V D型TPMS点阵材料典型压缩应力-应变曲线
图6  激光选区熔化(SLM)和SEBM成形Ti-6Al-4V点阵材料的力学性能对比(a) compressive strain (εˉ—average compressive strain)(b) specific elastic modulus(c) specific yield strength(d) specific compressive strength
1 Zhang X Z, Leary M, Tang H P, et al. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 75
2 Schoen A H. Infinite Periodic Minimal Surfaces without Self-Intersections [M]. Washington, DC: NASA, 1970: 30
3 Schwarz H A. Gesammelte Mathematische Abhandlungen [M]. Berlin Heidelberg: Springer, 1890: 6
4 Han S C, Choi J M, Liu G, et al. A microscopic shell structure with schwarz's D-surface [J]. Sci. Rep., 2017, 7: 13405
5 Giannitelli S M, Accoto D, Trombetta M, et al. Current trends in the design of scaffolds for computer-aided tissue engineering [J]. Acta Biomater., 2014, 10: 580
6 Yánez A, Herrera A, Martel O, et al. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications [J]. Mater. Sci. Eng., 2016, C68: 445
7 Yánez A, Cuadrado A, Martel O, et al. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction [J]. Mater. Des., 2018, 140: 21
8 Ataee A, Li Y C, Fraser D, et al. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications [J]. Mater. Des., 2018, 137: 345
9 Challis V J, Xu X X, Zhang L C, et al. High specific strength and stiffness structures produced using selective laser melting [J]. Mater. Des., 2014, 63: 783
10 Yan C Z, Hao L, Hussein A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2015, 51: 61
11 Yan C Z, Hao L, Hussein A, et al. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting [J]. Mater. Sci. Eng., 2017, C75: 1515
12 Kadkhodapour J, Montazerian H, Darabi A C, et al. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials [J]. J. Mech. Behav. Biomed. Mater., 2017, 70: 28
13 Bobbert F S L, Lietaert K, Eftekhari A A, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J]. Acta Biomater., 2017, 53: 572
14 Gibson I, Rosen D W, Stucker B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing [M]. Boston, MA: Springer, 2010: 1
15 Tang H P, Wang J, Lu S L, et al. Research progress in selective electron beam melting [J]. Mater. China, 2015, 34: 225
15 汤慧萍, 王 建, 逯圣路等. 电子束选区熔化成形技术研究进展 [J]. 中国材料进展, 2015, 34: 225
16 Tang H P, Yang G Y, Liu H Y, et al. Study on biomedical porous Ti-6Al-4V alloy fabricated by electron beam selective melting [J]. Rare Met. Mater. Eng., 2014, 43: 127
16 汤慧萍, 杨广宇, 刘海彦等. 电子束选区熔化制备医用多孔钛合金研究 [J]. 稀有金属材料与工程, 2014, 43: 127
17 Tang H P, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting [J]. JOM, 2015, 67: 555
18 Horn T J, Harrysson O L A, Marcellin-Little D J, et al. Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting [J]. Addit. Manuf., 2014, 1-4: 2
19 Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 303
20 Mazur M, Leary M, Sun S J, et al. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM) [J]. Int. J. Adv. Manuf. Technol., 2016, 84: 1391
21 Yavari S A, Ahmadi S M, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. J. Mech. Behav. Biomed. Mater., 2015, 43: 91
22 Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment [J]. Mater. Sci. Eng., 2016, C59: 690
23 Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures [J]. Addit. Manuf., 2015, 5: 77
24 Yavari S A, Wauthle R, van der Stok J, et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting [J]. Mater. Sci. Eng., 2013, C33: 4849
25 van der Stok J, van der Jagt O P, Yavari S A, et al. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects [J]. J. Orthop. Res., 2013, 31: 792
26 Van Bael S, Chai Y C, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds [J]. Acta Biomater., 2012, 8: 2824
27 Arabnejad S, Johnston R B, Pura J A, et al. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints [J]. Acta Biomater., 2016, 30: 345
28 Van Bael S, Kerckhofs G, Moesen M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures [J]. Mater. Sci. Eng., 2011, A528: 7423
29 Peng W M, Liu Y F, Jiang X F, et al. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications [J]. J. Zhejiang Univ., Sci., 2019, 20B: 647
30 Sun Y L, Kang H L, Lin K S, et al. Evaluation of mechanical properties and osteogenesis ability of porous titanium alloy scaffolds manufactured by selective laser melting technique [J]. Orthop. Biomech. Mater. Clin. Study., 2019, 16(2): 1
30 孙允龙, 康红磊, 林坷升等. 基于选区激光熔融技术制备的多孔钛合金支架的力学性能及成骨能力评价 [J]. 生物骨科材料与临床研究, 2019, 16(2): 1
31 Liang H X, Yang Y W, Xie D Q, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective laser melting and in vitro biocompatibility [J]. J. Mater. Sci. Technol., 2019, 35: 1284
32 Zhao L, Pei X, Jiang L H, et al. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair [J]. Composites, 2019, 162B: 154
33 Molinari A, Klarin J, Johansson F, et al. Mechanical properties of porous structures produced by selective laser melting of a Ti6Al4V alloy powder [J]. J. Japan Soc. Powder Powder Metall., 2018, 65: 481
34 Raghavendra S, Molinari A, Fontanari V, et al. Tensile and compression properties of variously arranged porous Ti-6Al-4V additively manufactured structures via SLM [J]. Procedia Struct. Integr., 2018, 13: 149
35 Zhang M K, Yang Y Q, Wang D, et al. Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting [J]. Mater. Sci. Eng. 2018, A736: 288
36 Onal E, Frith J E, Jurg M, et al. Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds [J]. Metals, 2018, 8: 200
37 Ahmadi S M, Campoli G, Yavari S A, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells [J]. J. Mech. Behav. Biomed. Mater., 2014, 34: 106
38 Ahmadi S M, Yavari S A, Wauthle R, et al. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties [J]. Materials, 2015, 8: 1871
39 Hedayati R, Sadighi M, Mohammadi-Aghdam M, et al. Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells [J]. Int. J. Mech. Sci., 2016, 106: 19
40 Liu F, Mao Z F, Zhang P, et al. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties [J]. Mater. Des., 2018, 160: 849
41 Zhang B Q, Pei X, Zhou C C, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction [J]. Mater. Des., 2018, 152: 30
42 Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting [J]. J. Alloys Compd., 2017, 713: 248
43 Wang Y, Chen J M, Yuan Y P. Influence of the unit cell geometrical parameter to the mechanical properties of Ti6Al4V open-porous scaffolds manufactured by selective laser melting [J]. Appl. Mech. Mater., 2016, 851: 201
44 Sercombe T B, Xu X X, Challis V J, et al. Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting [J]. Mater. Des., 2015, 67: 501
45 Chen J K, Wu M W, Cheng T L, et al. Continuous compression behaviors of selective laser melting Ti-6Al-4V alloy with cuboctahedron cellular structures [J]. Mater. Sci. Eng., 2019, C100: 781
46 Feng C D, Xia Y, Li X, et al. Micro-pore structure and mechanical properties of porous titanium scaffold using 3D print technology [J]. J. Med. Biomech., 2017, 32: 256
46 冯辰栋, 夏 宇, 李 祥等. 3D打印多孔钛支架微观孔隙结构和力学性能 [J]. 医用生物力学, 2017, 32: 256
[1] 孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
[2] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[3] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[4] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[5] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[6] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[7] 张凤英 谭华 陈静 林鑫 黄卫东. 混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响[J]. 金属学报, 2012, 48(2): 159-163.
[8] 杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.
[9] 宫波;赖祖涵;新家光雄;小林俊郎. 通过氢处理改善α+β型钛合金的拉伸性能[J]. 金属学报, 1992, 28(10): 11-14.
[10] 徐振声;宫波;张彩碚;赖祖涵. 氢对Ti-6Al-4V合金的高温增塑作用[J]. 金属学报, 1991, 27(4): 26-29.
[11] 赵林若;张少卿;颜鸣皋. Ti-6Al-4V合金超塑性变形中α相的滑移系统及位错分布特征[J]. 金属学报, 1990, 26(1): 26-31.