Please wait a minute...
金属学报  2006, Vol. 42 Issue (7): 722-726     
  论文 本期目录 | 过刊浏览 |
Mo2Ni3Si/γ-Ni金属硅化物合金显微组织及室温干滑动磨损行为研究
徐亚伟;王华明
北京航空航天大学材料科学与工程学院;北京100083
Microstructure and room-temperature dry sliding wear behaviors of Mo2Ni3Si/γ-Ni metal silicide alloy
XU Yawei WANG Huaming
Laboratory of Laser Materials Processing and Manufacturing; School of Materials Science and Engineering; BeiHang University; Beijing 100083
引用本文:

徐亚伟; 王华明 . Mo2Ni3Si/γ-Ni金属硅化物合金显微组织及室温干滑动磨损行为研究[J]. 金属学报, 2006, 42(7): 722-726 .
, . Microstructure and room-temperature dry sliding wear behaviors of Mo2Ni3Si/γ-Ni metal silicide alloy[J]. Acta Metall Sin, 2006, 42(7): 722-726 .

全文: PDF(1131 KB)  
摘要: 本文设计并采用激光熔炼技术制备出镍基固溶体γ增韧的Mo2Ni3Si三元金属硅化物合金,其显微组织由Mo2Ni3Si初生枝晶及枝晶间的Mo2Ni3Si/γ共晶组成。室温干滑动磨损试验结果表明,由于Mo2Ni3Si的hp12 Laves相晶体结构及强韧性基体γ相的牢固支持,Mo2Ni3Si/γ合金具有十分优异的耐磨性能,其磨损机理是硬度较低的γ/Mo2Ni3Si共晶组织被优先磨损;凸出于磨损表面的部分Mo2Ni3Si初生相失去了γ的有力支持而发生开裂及剥落现象;另一方面,Mo2Ni3Si初生相保护基体免于严重磨损,其磨损速率最终控制合金的总磨损速率。
关键词 Mo2Ni3Si金属硅化物磨损Laves相    
Abstract:γ-Ni toughened Mo2Ni3Si/γ-Ni metal silicide alloy consisting of Mo2Ni3Si primary dendrites and the interdendrtic γ/ Mo2Ni3Si eutectic was designed and fabricated by the lasmeltTM process. Room temperature wear properties were evaluated under metallic sliding wear test conditions and the wear mechanisms were discussed. Due to the unique and strong covalent-metallic bonding of Mo2Ni3Si Laves phase and the toughening effect of γ, Mo2Ni3Si /γ alloy performed excellent wear resistance. The wear mechanisms can be concluded as follows: the softer γ/ Mo2Ni3Si eutectic was preferential worn during wear process; due to the serious preferential abrasion, partial Mo2Ni3Si primary dendrites that protruded the worn surface were cracked and detached when losing the support of ductile matrix; in addition, the protruded Mo2Ni3Si primary dendrites prevent the matrix from continuous abrasion and control the total wear rate.
Key wordsMo2Ni3Si    Metal silicide    wear    Laves phase
收稿日期: 2005-10-21     
ZTFLH:  TG331  
[1] Liu C T,Zhu J H, Brady M P, McKamey C G, Pike L M. Intermetallics, 2000; 8: 1119
[2] Cruse T A,Newkirk J W.Mater Sci Eng,1997;A239-240:410
[3] Sauthoff G.Intermetallics, 2000; 8: 1101
[4] Wang H M,Luan D Y,Zhang L Y.Scr Mater,2003;48:1179
[5] Tang H B,Fang Y L,Wang H M. Acta Mater, 2004; 52:1773
[6] Lu X D, Wang H M. J Alloys Compd, 2003; 359: 287
[7] Lu X D, Wang H M. Appl Surf Sci, 2003; 214: 190
[8] Lu X D, Wang H M. Acta Mater, 2004; 52: 5419
[9] Duan G, Wang H M. Scr Mater, 2002; 46: 101
[10] Ming Qian, Lim L C, Chen Z D. Surf Coat Technol, 1998;106: 174
[11] Wang H M, Xia W M, Jin Y S. Wear, 1996; 195: 47
[12] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Intermetallics, 2001; 9: 869
[13] Sadananda K, Feng C R, Mitra R, Deevi S C. Mater Sci Eng, 1999; A261: 223
[14] Schneibel J H, Liu C T, Easton D S,Carmichael C A.Mater Sci Eng, 1999; A261: 78
[15] Chu F, Thoma D J,McClellan K J,Peralta P. Mater Sci Eng, 1999; A261: 44
[16] Wang H M, Duan G. Mater Sci Eng, 2002; A336: 117A
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[4] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[5] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[6] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[7] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[8] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[9] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[10] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[11] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[13] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[14] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[15] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.