Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 308-316    DOI: 10.11900/0412.1961.2018.00136
  本期目录 | 过刊浏览 |
N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响
杨莎莎1,2,杨峰3,陈明辉4(),牛云松1,朱圣龙1,王福会4
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
3. 沈阳理工大学装备工程学院 沈阳 110159
4. 东北大学沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering
Shasha YANG1,2,Feng YANG3,Minghui CHEN4(),Yunsong NIU1,Shenglong ZHU1,Fuhui WANG4
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
4. Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
引用本文:

杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
Shasha YANG, Feng YANG, Minghui CHEN, Yunsong NIU, Shenglong ZHU, Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. Acta Metall Sin, 2019, 55(3): 308-316.

全文: PDF(17619 KB)   HTML
摘要: 

采用磁控溅射技术,以AISI304不锈钢为基体,通过在溅射过程中引入不同流量的N2,制备出不同程度N掺杂的Ta涂层,研究了少量N掺杂对Ta涂层微观结构、物相组成、力学及磨损性能的影响。结果表明,无N掺杂时,Ta涂层中的物相组成为α-Ta,晶粒粗大,(211)和(110)晶面竞争生长;N掺杂后涂层中的物相组成为TaN0.1,晶粒细小并呈(110)择优取向。少量N掺杂可以显著提高Ta涂层的硬度和弹性模量,并大幅度改善其抗磨损性能。涂层硬度和弹性模量的提高与晶粒细化、N原子固溶及涂层中存在的压应力有关。N掺杂后涂层的磨损机制由磨粒磨损向黏着磨损转变。

关键词 Ta涂层磁控溅射N掺杂磨损    
Abstract

Tantalum coating attracts increasing attention in heat, corrosion and wear resistant applications today because of its high melting point, immunity to chemical attack and high toughness. Recently, tantalum has been considered a desirable candidate to replace electrodeposited (ED) chromium coating which is often used as protective coating against corrosion and wear. However, the wastes associated with ED chromium contain a well-known carcinogen, i.e. hexavalent chromium, which is a hazard to environment. In comparison, thick Ta coating is regarded as a more environmental and beneficial replacement. Tantalum coating is usually obtained by magnetron sputtering. However, tantalum exhibits two distinct crystalline phases. The body-centered cubic α-phase is the common phase in bulk metal and thermodynamically stable. α-Ta with good ductility and excellent mechanical properties is welcomed in most fields. β-Ta is a metastable phase with tetragonal crystalline lattice structure. The properties of β-Ta are not as advantageous as α-Ta because it is hard and brittle. The existence of β-Ta may compromise tantalum coating in adhesion, corrosion and wear resistance, hence, finding appropriate deposition conditions to obtain pure α-phase Ta coating has attracted a lot of interests. In previous work, pure α-phase Ta coating has been deposited by direct current magnetron sputtering when substrates were located in negative glow space. In this work, nitrogen was mixed in sputtering gases to deposit Ta coating with N interstitially dissolved on stainless steel. Effect of N on microstructure, mechanical and tribological performance of Ta coating was studied. Results indicated that when no nitrogen or very low flux of N2 (l mL/s) were introduced in gas mixtures, α-phase Ta coating with coarse grains grew and revealed strong reflections of (211) and (110) diffraction peaks. When N2 flow rate reached to 5 mL/s, Ta coating with N interstitially dissolved was obtained and revealed grain refinement and (110) preferred orientation of TaN0.1 phase. Compared to α-phase Ta coating, N-doped tantalum coatings displayed excellent wear resistance for their high hardness and H 3/E 2 ratio (H—hardness, E—elastic modulus). The wear mechanism for α-Ta coating was abrasive wear, while that of N-doped Ta coating switched to adhesive wear.

Key wordsTa coating    magnetron sputtering    nitrogen doping    wear
收稿日期: 2018-04-11     
ZTFLH:  TG174.4  
基金资助:国家重点研发计划项目(2017YFB0306100);国家自然科学基金项目(51671053);国家自然科学基金项目(51701223);装备预研教育部联合基金项目(6141A020332-004);中央高校基本科研业务费专项基金项目(N160205001)
作者简介: 杨莎莎,女,1993年生,硕士生

Coating

Ar flow rate

mL·s-1

N2 flow rate

mL·s-1

Cathode power

kW

Deposition temperature

Base pressure

Pa

Sputtering

pressure

Pa

Deposition time

h

10Ar1002.02005.0×10-32.3×10-14
10Ar-1N21012.02005.0×10-32.3×10-14
10Ar-5N21052.02005.0×10-32.4×10-14
15Ar1502.02005.0×10-33.4×10-14
15Ar-5N21552.02005.0×10-33.5×10-14
表1  Ta涂层的制备工艺参数
图1  不同Ar气以及N2流量下沉积的Ta涂层表面及断面形貌的SEM像
图2  15Ar和15Ar-5N2沉积态涂层的TEM像及选区电子衍射花样
图3  不同Ar气以及N2流量下沉积的Ta涂层XRD谱
图4  15Ar-5N2沉积态涂层Ta4f XPS结果

Coating

Hardness

GPa

Elastic modulus

GPa

H/E

H3/E2

Wear Rate

10-2 mg·N-1·m-1

10Ar8.159212.4210.03840.01201.333
10Ar-1N212.396237.5700.05220.03370.167
10Ar-5N219.851266.4520.07450.11020.133
15Ar7.885233.8450.03370.00901.483
15Ar-5N221.569294.2570.07330.1159-0.017
表2  Ta涂层的力学性能和磨损率
图5  不同Ar气以及N2流量下沉积的Ta涂层磨痕形貌的SEM像
图6  图5b中矩形区域的放大图以及EDS分析
图7  有无N元素掺杂时Ta涂层的磨损机理示意图
[1] Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: Theories and mechanisms [J]. Wear, 2005, 258: 659
[2] Chen X J, Yan Q, Ma Q, Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate [J]. Appl. Surf. Sci., 2017, 405: 273
[3] Van Phuong N, Kwon S C, Lee J Y, et al. The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium [J]. Surf. Coat. Technol., 2012, 206: 4349
[4] Quan C, He Y D. Properties of nanocrystalline Cr coatings prepared by cathode plasma electrolytic deposition from trivalent chromium electrolyte [J]. Surf. Coat. Technol., 2015, 269: 319
[5] Lee S L, Windover D, Audino M, et al. High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation [J]. Surf. Coat. Technol., 2002, 149: 62
[6] Maeng S M, Axe L, Tyson T A, et al. Corrosion behavior of magnetron sputtered α-Ta coatings on smooth and rough steel substrates [J]. Surf. Coat. Technol., 2006, 200: 5717
[7] Hu X F, Xu Q. Preparation of tantalum by electro-deoxidation in a CaCl2-NaCl melt [J]. Acta Metall. Sin., 2006, 42: 285
[7] 胡小锋, 许 茜. CaCl2-NaCl熔盐电脱氧法制备金属Ta [J]. 金属学报, 2006, 42: 285
[8] Matson D W, McClanahan E D, Lee S L, et al. Properties of thick sputtered Ta used for protective gun tube coatings [J]. Surf. Coat. Technol., 2001, 146-147: 344
[9] Wang S, Xiong D S, Li J L, et al. Wear and erosion resistance properties of electroplating Ta coating in molten salt [J]. China Surf. Eng., 2015, 28(2): 101
[9] 王 升, 熊党生, 李建亮等. 熔盐电镀钽及其耐磨损烧蚀性能 [J]. 中国表面工程, 2015, 28(2): 101
[10] Myers S, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering [J]. Surf. Coat. Technol., 2013, 214: 38
[11] Lundin D, Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering [J]. J. Mater. Res., 2012, 27: 780
[12] Lin J L, Moore J J, Sproul W D, et al. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering [J]. IEEE Trans. Plasma Sci., 2010, 38: 3071
[13] Ferreira F, Sousa C, Cavaleiro A, et al. Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode [J]. Surf. Coat. Technol., 2017, 314: 97
[14] Frank S, Gruber P A, Handge U A, et al. In situ studies on the cohesive properties of α- and β-Ta layers on polyimide substrates [J]. Acta Mater., 2011, 59: 5881
[15] Niu Y S, Chen M H, Wang J L, et al. Preparation and thermal shock performance of thick α-Ta coatings by direct current magnetron sputtering (DCMS) [J]. Surf. Coat. Technol., 2017, 321: 19
[16] Lou B Y, Wang Y X. Effects of Mo content on the micro-structure and tribological properties of CrMoAlN films [J]. Acta Metall. Sin., 2016, 52: 727
[16] 楼白杨, 王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响 [J]. 金属学报, 2016, 52: 727
[17] Han K C, Liu Y Q, Lin G Q, et al. Study on atomic-scale strengthening mechanism of transition-metal nitride MNx(M=Ti,Zr,Hf) films within wide composition ranges [J]. Acta Metall. Sin., 2016, 52: 1601
[17] 韩克昌, 刘一奇, 林国强等. 宽固溶区过渡金属氮化物MNx(M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究 [J]. 金属学报, 2016, 52: 1601
[18] Cui W F, Cao D, Qin G W. Microstructure and wear resistance of Ti/TiN multilayer films deposited by magnetron sputtering [J]. Acta Metall. Sin., 2015, 51: 1531
[18] 崔文芳, 曹 栋, 秦高悟. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能 [J]. 金属学报, 2015, 51: 1531
[19] Zhao S L, Zhang Z, Zhang J, et al. Microstructure and wear resistance of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited by multi-arc ion plating [J]. Acta Metall. Sin., 2016, 52: 747
[19] 赵时璐, 张 震, 张 钧等. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能 [J]. 金属学报, 2016, 52: 747
[20] Raole P M, Narsale A M, Kothari D C, et al. Glancing-angle X-ray diffraction and X-ray photoelectron spectroscopy studies of nitrogen-implanted tantalum [J]. Mater. Sci. Eng., 1989, A115: 73
[21] Rogers J D, Sundaram V S, Kleiman G G, et al. High resolution study of the M45N67N67 and M45N45N67 Auger transitions in the 5d series [J]. J. Phys., 1982, 12F: 2097
[22] Takano I, Isobe S, Sasaki T A, et al. Nitrogenation of various transition metals by N+2-ion implantation [J]. Appl. Surf. Sci., 1989, 37: 25
[23] Stavrev M, Fischer D, Wenzel C, et al. Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films [J]. Thin Solid Films, 1997, 307: 79
[24] Zhu S L, Wang F H, Wu W T. Theory and Application of Reactive Sputtering Kinetics [M]. Beijing: China Science and Technology Press, 1999: 18
[24] 朱圣龙, 王福会, 吴维?. 反应溅射动力学理论及应用 [M]. 北京: 中国科学技术出版社, 1999: 18
[25] Pelleg J, Zevin L Z, Lungo S, et al. Reactive-sputter-deposited TiN films on glass substrates [J]. Thin Solid Films, 1991, 197: 117
[26] Wang X, Wang Z Y, Feng Z X, et al. Effect of N doping on microstructure, mechanical and tribological properties of V-Al-C coatings [J]. Acta Metall. Sin., 2017, 53: 709
[26] 王 鑫, 王振玉, 冯再新等. N掺杂对V-Al-C涂层微观结构、力学及摩擦性能的影响 [J]. 金属学报, 2017, 53: 709
[27] Xu S, Xu J, Munroe P, et al. Nanoporosity improves the damage tolerance of nanostructured tantalum nitride coatings [J]. Scr. Mater., 2017, 133: 86
[28] Hakamada M, Nakamoto Y, Matsumoto H, et al. Relationship between hardness and grain size in electrodeposited copper films [J]. Mater. Sci. Eng., 2007, A457: 120
[29] Yamamoto T, Kawate M, Hasegawa H, et al. Effects of nitrogen concentration on microstructures of WNx films synthesized by cathodic arc method [J]. Surf. Coat. Technol., 2005, 193: 372
[30] Cheng G A, Han D Y, Liang C L, et al. Influence of residual stress on mechanical properties of TiAlN thin films [J]. Surf. Coat. Technol., 2013, 228: S328
[31] Yu L H, Dong H Z, Xu J H. Influence of C content on microstructure, mechanical properties and friction and wear properties of TiWCN composite films [J]. Acta Metall. Sin., 2014, 50: 1350
[31] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响 [J]. 金属学报, 2014, 50: 1350
[32] Aliofkhazraei M, Rouhaghdam A S. Fabrication of TiC/WC ultra hard nanocomposite layers by plasma electrolysis and study of its characteristics [J]. Surf. Coat. Technol., 2010, 205: S51
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[5] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[6] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[7] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[10] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[11] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[12] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[13] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[14] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[15] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.