Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1125-1129     
  论文 本期目录 | 过刊浏览 |
MoSi2和WSi2的价电子结构及性能分析
彭 可 易茂中 冉丽萍
中南大学粉末冶金国家重点实验室; 长沙410083
Analysis of Valence Electronic Structures and Properties of MoSi2 And WSi2
PENG Ke; YI Maozhong; RAN Liping
State Key Laboratory for Powder Metallurgy;Central South University; Changsha; 410083
引用本文:

彭可; 易茂中; 冉丽萍 . MoSi2和WSi2的价电子结构及性能分析[J]. 金属学报, 2006, 42(11): 1125-1129 .
, , . Analysis of Valence Electronic Structures and Properties of MoSi2 And WSi2[J]. Acta Metall Sin, 2006, 42(11): 1125-1129 .

全文: PDF(695 KB)  
摘要: 根据固体与分子经验电子理论,对MoSi2和WSi2的价电子结构进行了定量的分析,通过键距差方法计算了MoSi2和WSi2晶体中各键上的共价电子数。结果表明,在MoSi2和WSi2晶体中,沿<331>位向分布的Mo-Si和W-Si原子键最强,这些键上的共价电子数和键能分别影响化合物的硬度和熔点。晶体中晶格电子数影响其导电性和塑性,MoSi2晶体中含有较高密度的晶格电子,因此MoSi2的导电性和塑性比WSi2好。并从键络分布的不均匀性解释了MoSi2和WSi2脆性产生的原因。
关键词 二硅化钼二硅化钨价电子硬度导电率    
Abstract:According to the empirical electron theory of solids and molecules, the valence electron structure of MoSi2 and WSi2 were quantitatively studied, and the values of valence electrons on every bond in MoSi2 and WSi2 crystals were calculated by the method of bond length difference. The results showed that the strongest bonds in the unit cells of MoSi2 and WSi2 were Mo-Si and W-Si bond along <331> direction separately, whose valence electron numbers and the bond energy have great impact on the hardness and melting point of MoSi2 and WSi2 phases, respectively. Since the numbers of lattice electrons in a crystal influence its conductivity and plasticity, and there were lattice electrons with higher densities in MoSi2, the conductivity and plasticity of MoSi2 were better than WSi2. Also, it is infered that the brittleness of MoSi2 and WSi2 could be explained primarily by a heterogeneity of bond distribution.
Key wordsmolybdenum disilicide    tungsten disilicide    valence electron    hardness
收稿日期: 2006-04-12     
ZTFLH:  TG148  
[1] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Intermetallics, 2001; 9: 869
[2] Petrovic J J. Intermetallics, 2000; 8: 1175
[3] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Scr Mater, 2001; 44: 879
[4] Petrovic J J, Vasudevan A K. Mater Sci Eng, 1999; A261: 1
[5] Petrovic J J, Honnell R E. Ceram Eng Sci Proc, 1990; 11: 734
[6] Zhang H A, Chen P, Wang M J, Liu X Y. Rare Met, 2002; (4): 304
[7] Bhattacharyya B K, Bylander D M, Kleinman L. Phys Rev, 1985; 32B: 7973
[8] Zachariasen W. Physik Chem, 1927; 128: 39
[9] Mattheiss L F. Phys Rev, 1992; B45: 3252
[10] Harada Y, Morinaga M, Saso D, Takata M, Sakata M. Intermetallics, 1998; 6: 523
[11] Tanaka K, Nawata K, Inui H, Yamaguchi M, Koiwa M. Mater Res Soc Symp Proc, 2001; 646: 4
[12] Zhang R L. Empirical Electron Theory of Solid and Molecules. Changchun: Jilin Science and Technology Publishing House,1993:231 (张瑞林,固体与分子经验电子理论.长春:吉林科学技术出版社.1993:231)
[13] Xu W D, Zhang R L, Yu R H. Sci Chin, 1988; 3A: 323 (徐万东,张瑞林,余瑞璜.中国科学, 1988;3A:323)
[14] Chen S L, Gu Q, Wang Y M. Acta Phys Sin, 1995; 44: 940 (陈舜麟,顾强,王夭民.物理学报, 1995;44:940)
[15] Jia D, Dong Z Z, Yu S J, Liu W X. Rare Met Mater Eng, 1998; 27: 152 (贾堤,董治中,于申军,刘文西.稀有金属材料与工程,1998; 27:152)
[16] Liu L. Rare Met Mater Eng, 1997; 26: 9 (刘宁.稀有金属材料与工程, 1997;26:9)
[17] Wang H R, Ye Y F, Ming G H, Qin J Y, Wang W M. Sci Bull, 2001; 46: 215 (王焕荣,叶以富,闵光辉,秦敬玉,王伟民.科学通报,2001; 46:215)
[18] Zheng Y, Xiong W H, Zong X J. Rare Met Mater Eng, 2002; 31: 13 (郑勇,熊惟皓,宗校军.稀有金属材料与工程,2002;31: 13)
[19] Liu N, Tian C Y, Shu S M, Xu G Y, Zhang R L. J Chin Ceram Soc, 1998; 26: 210 (刘宁,田春艳,舒士明,徐根应,张瑞林.硅酸盐学报,1998; 26:210)
[20] Inui H, Nakamoto T, Ishikawa K, Yamaguchi M. Mater Sci Eng, 1999; A261: 131
[21] James F, Shackelford W A. CRC Materials Science and Engineering Handbook. Boca Raton: CRC Press LLC, 2001: 567
[22] Ito K, Yano T, Nakamoto T, Inui H, Yamaguchi M. Acta Mater, 1999; 47: 937
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[10] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[11] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[12] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[13] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[14] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[15] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.