Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1291-1301    DOI: 10.11900/0412.1961.2019.00080
  本期目录 | 过刊浏览 |
高硬导电Cu-Ni-Si合金成分规律
李冬梅1,2,姜贝贝1,李晓娜1,王清1,董闯1()
1. 大连理工大学材料科学与工程学院三束材料改性教育部重点实验室 大连 116024
2. 内蒙古民族大学机械工程学院 通辽 028000
Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys
LI Dongmei1,2,JIANG Beibei1,LI Xiaona1,WANG Qing1,DONG Chuang1()
1. Key Lab of Materials Modification by Laser, Iron and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Mechanical Engineering, Inner Mongolia University For Nationalities, Tongliao 028000, China
引用本文:

李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
Dongmei LI, Beibei JIANG, Xiaona LI, Qing WANG, Chuang DONG. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. Acta Metall Sin, 2019, 55(10): 1291-1301.

全文: PDF(12680 KB)   HTML
摘要: 

用团簇加连接原子模型设计了系列用于制作引线框架的Cu-Ni-Si合金。在Cu含量小于95%的浓溶质区,采用单团簇模型[(Ni2/3Si1/3)-Cu12]Cu1~6设计合金成分;在Cu含量大于或等于95%的稀溶质区,采用双团簇模型{[(Ni2/3Si1/3)-Cu12]Cu3}A+{[Cu-Cu12]Cu3}B设计合金成分。利用XRD、OM、TEM、Vickers硬度计、电导率测量仪等实验获得Cu-Ni-Si合金的成分规律。结果表明,在Cu-Ni-Si合金的成分范围内存在Cu含量为95.0%~95.8%的成分敏感区,此区间内合金同时存在时效析出强化和调幅分解强化,致使Vickers硬度突然增加,导电率降低,两者变化趋势相反,且与成分之间无规律性依赖关系。成分敏感区前后的浓溶质区和稀溶质区的合金中,不存在调幅分解强化,Vickers硬度(H)随Cu含量(CCu)增加而减少,分别满足H=-12.6CCu+1362.7和H=-26.2CCu+2777.3的线性关系;相应的导电率(σ)随CCu的线性增加关系分别为σ=0.2CCu+28.6和σ=5.2CCu-466。

关键词 Cu-Ni-Si合金成分规律硬度导电率成分敏感区    
Abstract

Cu-Ni-Si alloys are among the most widely used electrical conductive (>30%IACS) alloys with quite high strength level (>500 MPa), so they are especially suitable for lead frames and connector joints. However, these two properties are quite composition sensitive, apart from their tight connection with processing. Moreover, their compositions fall within quite broad ranges that poses difficulties for the industries. For instance, typical C7025 alloy has a specified composition (mass fraction, %) range of Ni 2.2~4.2, Si 0.25~1.2, Mg 0.05~0.3, plus less than 0.5 of other impurity elements. Obviously the composition ranges of the elements are far from even their absolute contents. The present work focuses on understanding the composition rule of Cu-Ni-Si via a new structural tool, the cluster-plus-glue-atom model. In this model, any solid solution is described by a nearest neighbor coordination polyhedron plus a one-to-six glue atoms. Specifically for Cu-based alloys, the cluster is cubooctahedron. The composition formula for solute-rich Cu-Ni-Si alloys and pure Cu are established, respectively [(Ni2/3Si1/3)-Cu12]Cu1~6 and [Cu-Cu12]Cu3. A series of Cu-Ni-Si alloys were designed on the basis of the cluster-plus-glue-atom model. In the concentrated solute region with Cu content less than 95%, the alloys were designed using the single cluster model [(Ni2/3Si1/3)-Cu12]Cu1~6. In the dilute solute region where Cu content is larger than or equal to 95%, the alloys were designed using the double cluster model {[(Ni2/3Si1/3)-Cu12]Cu3}A+{[Cu-Cu12]Cu3}B. The alloys were arc-melted into ingots under Ar atmosphere and were subjected to a solution treatment at 950 ℃ for 1 h plus water quenching, and then to an ageing at 450 ℃ for 4 h plus water quenching. The microstructure and properties of the alloys were characterized and tested by XRD, OM, TEM, Vickers hardness tester and digital metal conductivity instrument. The composition rule of the designed Cu-Ni-Si alloy was obtained by experiments.The results shown a special range of Cu content in 95.0%~95.8% as a composition sensitive region, in which, in addition to ageing precipitation strengthening, the alloys also have amplitude modulated decomposition strengthening, resulting in a sudden increase in Vickers hardness and a decrease in electrical conductivity. Vickers hardness and electrical conductivity change with composition variations in an irregular manner. In the concentrated and dilute solute region before and after the composition sensitive region, Vickers hardness (H) is linearly related to the Cu content (CCu) by H=-12.6CCu+1362.7 and H=-26.2CCu+2777.3, and the corresponding electrical conductivity (σ) is also linearly related to the CCu by σ=0.2CCu+28.6 and σ=5.2CCu-466.

Key wordsCu-Ni-Si alloy    composition rule    hardness    electrical conductivity    composition sensitive region
收稿日期: 2019-03-25     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2017YFB0306100);National Key Research and Development Program of China(2017YFB0306100);国家自然科学基金项目(11674045);National Natural Science Foundation of China(11674045)
作者简介: 李冬梅,女,1973年生,博士生

Commercial-grade alloy

Composition, mass fraction / %

(atomic fraction / %)

Ni/Si

(atomic ratio)

Electrical conductivity / %IACS

Vickers hardness

HV

CAC65[21]

Cu-3.2Ni-0.68Si-0.5Sn-1.0Zn

2.2

48

200

(Cu93.81Ni3.43Si1.53Sn0.27Zn0.96)

KLF-125[19]

Cu-3.2Ni-0.75Si-1.25Sn-0.3Zn

2.0

35

200

(Cu93.92Ni3.44Si1.69Sn0.66Zn0.29)

KLFA85[20]

Cu-3.2Ni-0.7Si-1.1Zn

2.2

40

260

(Cu93.95Ni3.42Si1.57Zn1.06)

HCL305[23]

Cu-2.5Ni-0.5Si-1.7Zn-0.03P

2.3

43

180

(Cu94.49Ni2.69Si1.12Zn1.64P0.06)

KLF-1[18]

Cu-3.2Ni-0.75Si-0.32Zn

2.0

55

180

(Cu94.59Ni3.42Si1.68Zn0.31)

MAX375[24]

Cu-2.85Ni-0.7Si-0.5Sn-0.5Zn

1.9

40

230

(Cu94.62Ni3.06Si1.57Sn0.27Zn0.48)

QSi0.7[19]

Cu-3.2Ni-0.7Si-0.3Zn

2.2

56

220

(Cu94.72Ni3.42Si1.57Zn0.29)

C7025[22]

Cu-3.0Ni-0.65Si-0.15Mg

2.5

40

200

(Cu94.96Ni3.2Si1.45Mg0.39)

EFTEC-23Z[22]

Cu-2.5Ni-0.65Si-0.5Zn-0.03Ag

1.8

53

200

(Cu95.37Ni2.67Si1.46Zn0.48Ag0.02)

MAX251[24]

Cu-2Ni-0.5Si-0.5Sn-1Zn

1.9

48

178

(Cu95.49Ni2.15Si1.13Sn0.27Zn0.96)

MAX251C[24]

Cu-2Ni-0.5Si-0.5Sn-1Zn

1.9

37

195

(Cu95.49Ni2.15Si1.13Sn0.27Zn0.96)

C7035[21]

Cu-1.5Ni-0.6Si-1.1Co

2.1

55

260

(Cu95.87Ni1.61Si1.35Co1.17)

CW111C[21]

Cu-2.05Ni-0.6Si

1.6

40

150

(Cu96.46Ni2.2Si1.34)

C7026[25]

Cu-2Ni-0.45Si

2.1

40

200

(Cu96.84Ni2.15Si1.01)

C19010[26]

Cu-1.6Ni-0.3Si

2.5

60

150

(Cu97.6Ni1.72Si0.68)

QSi0.25[20]

Cu-1.0Ni-0.25Si-0.1Zn

1.9

61

160

(Cu98.26Ni1.08Si0.56Zn0.1)
表1  Cu-Ni-Si 系商用牌号合金的成分、Ni/Si比、导电性和Vickers硬度[18,19,20,21,22,23,24,25,26]
图1  Ni-Si团簇结构单元散布于基体Cu中的二维投影示意图

No.

Cluster formula

Composition, mass fraction / %

(atomic fraction / %)

Electrical conductivity

%IACS

Vickers hardness HV

FWHM

(°)

1

[(Ni2/3Si1/3)1.106-Cu12]Cu0.894

93.9Cu-4.95Ni-1.19Si

49

201

0.322

(Cu92.1Ni5.3Si2.6)

2

[(Ni2/3Si1/3)1.05-Cu12]Cu0.95

94.2Cu-4.7Ni-1.1Si

51

195

0.326

(Cu92.5Ni5Si2.5)

3

[(Ni2/3Si1/3)-Cu12]Cu1

94.4Cu-4.5Ni-1.1Si

51

193

0.329

(Cu92.8Ni4.8Si2.4)

4

[(Ni2/3Si1/3)-Cu12]Cu2

94.8Cu-4.2Ni-1Si

51

187

0.318

(Cu93.3Ni4.4Si2.2)

5

[(Ni2/3Si1/3)-Cu12]Cu3

95.1Cu-4Ni-0.9Si

52

183

0.25

(Cu93.7Ni4.2Si2.1)

6

[(Ni2/3Si1/3)-Cu12]Cu4

95.5Cu-3.6Ni-0.9Si

51

176

0.277

(Cu94.1Ni3.9Si2)

7

[(Ni2/3Si1/3)-Cu12]Cu6

95.9Cu-3.3Ni-0.8Si

50

169

0.314

(Cu94.7Ni3.5Si1.8)

8

{[(Ni2/3Si1/3)-Cu12]Cu3}4+

{[Cu-Cu12]Cu3}1

96.1Cu-3.1Ni-0.8Si

51

161

0.266

(Cu95Ni3.3Si1.7)

9

{[(Ni2/3Si1/3)-Cu12]Cu3}2+

{[Cu-Cu12]Cu3}1

96.8Cu-2.62Ni-0.63Si

39

216

0.348

(Cu95.8Ni2.8Si1.4)

10

{[(Ni2/3Si1/3)1.0602-Cu12]Cu3}0.996 +{[Cu-Cu12]Cu3}197.4Cu-2.1Ni-0.5Si

40

191

-

(Cu96.7Ni2.2Si1.1)

11

{[(Ni2/3Si1/3)-Cu12]Cu3}2+

{[Cu-Cu12]Cu3}3

98.1Cu-1.5Ni-0.4Si

48

172

0.278

(Cu97.5Ni1.7Si0.8)
表2  设计的 Cu-Ni-Si 合金的团簇成分式、成分、导电性、Vickers硬度和半峰宽
图2  450 ℃时效处理4 h后Cu-Ni-Si合金的XRD谱
图3  Cu-Ni-Si合金经450 ℃时效处理4 h后的OM像
图4  No.9和No.10合金在450 ℃时效处理4 h后的TEM像和对应的SAED谱
图5  450 ℃时效处理4 h后Cu-Ni-Si合金的硬度和导电率随CCu的变化
[1] Li S H, Li Z, Lei Q ,et al. Microstructure and properties of superhigh strength Cu-Ni-(Al)-Si Alloy [J]. Rare Met. Mater. Eng., 2015, 44: 1427
[1] (黎三华, 李 周, 雷 前等. 高强度Cu-Ni-(Al)-Si合金的组织和性能 [J]. 稀有金属材料与工程, 2015, 44: 1427)
[2] Roy D, Atwater M A, Youssef K ,et al. Studies on thermal stability, mechanical and electrical properties of nano crystalline Cu99.5Zr0.5 alloy [J]. J. Alloys Compd., 2013, 558: 44
[3] Azimi M, Akbari G H. Characterization of nano-structured Cu-6 wt.%Zr alloy produced by mechanical alloying and annealing methods [J]. J. Alloys Compd., 2013, 555: 112
[4] Suzuki S, Shibutani N, Mimura K,et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling [J]. J. Alloys Compd., 2006, 417: 116
[5] Huang B Y, Li C G, Shi L K ,et al. Nonferrous Materials Manual [The First Volume] [M]. Beijing: Chemical Industry Press, 2009: 256
[5] (黄伯云, 李成功, 石力开等. 有色金属材料手册[上] [M]. 北京: 化学工业出版社, 2009: 256)
[6] Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. J. Mater. Sci., 1994, 29: 218
[7] Lei Q, Li Z, Pan Z Y ,et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
[8] Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys [J]. Mater. Sci. Eng., 2013, A572: 65
[9] Hume-Rothery W, Raynor G V. The equilibrium and lattice-spacing relations in the system magnesium-cadmium [J]. Proc. Roy. Soc., 1940, 174A: 471
[10] Bagariatskii I A, Nosova G I, Tagunova T V. Factors in the formation of metastable phases in titanium-base alloys [J]. Sov. Phys. Dokl., 1958, 3: 1014
[11] Hall E O, Algie S H. The sigma phase [J]. Metall. Rev., 1966, 11: 61
[12] Morinaga M, Yukawa N, Adachi H. Alloying effect on the electronic structure of BCC Fe [J]. J. Phys., 1985, 15F: 1071
[13] Yu R H. The empirical electron theory of solids and molecules [J]. Chin. Sci. Bull., 1978, 23: 217
[14] Bania P J. Beta Titanium Alloys in the 1990's [M]. Warrendale, PA: TMS, 1993: 147
[15] Zeng W D, Shu Y, Zhou Y G. Artificial neural network model for the prediction of mechanical properties of Ti-10V-2Fe-3Al titanium alloy [J]. Rare Met. Mater. Eng., 2004, 33: 1041
[16] Reddy N S, Lee Y H, Park C H, et al. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural networks [J]. Mater. Sci. Eng., 2008, A492: 276
[17] Nunes R, Adams J H, Ammons M, et al. ASM Handbook (Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials) [M]. Geauga: ASM International Press, 1990: 760
[18] Wang L, Sun S Y, Fu X Q, et al. Microstructure and properties of Cu-Ni-Si based alloys for lead frame [J]. J.Univ Southeast. (Nat. Sci. Ed.), 2005, 35: 729
[18] (汪 黎, 孙善扬, 付小琴等. Cu-Ni-Si基引线框架合金的组织和性能 [J]. 东南大学学报(自然科学版), 2005, 35: 729)
[19] Fan L, Liu P, Jia S G, et al. Progress in copper alloys for lead frame research [J]. Dev. Appl. Mater., 2008, 23(4): 101
[19] (范 莉, 刘 平, 贾淑果等. 铜基引线框架材料研究进展 [J]. 材料开发与应用, 2008, 23(4): 101)
[20] Zhang Y, Lu M M, Hu Y Y, et al. Development and study of Cu-Ni-Si alloy for lead frame [J]. Shanghai Nonferrous Met., 2014, 35: 177
[20] (张 英, 陆萌萌, 胡艳艳等. 引线框架用Cu-Ni-Si合金的发展及研究现状 [J]. 上海有色金属, 2014, 35: 177)
[21] Novelty M L. Electronic Materials Handbook: Packaging, Vol.1 [M]. Novelty: ASM International, 1989: 1126
[22] Furukawa Electric. High Performance Copper Alloys for Leadframe [EB/OL] http://www.furukawa.co.jp/product/catalogue/pdf/ leadframe_s133.pdf
[23] Tummala R R, Rymaszewski E J, Klopfenstein A G. Microelectronics Packaging Handbook: Semiconductor Packaging (PartⅡ) [M]. Boston, Dordrecht, London: Kluwer Academic Publishers, 2004: 428
[24] Mitsubishi Shindoh Co., Ltd. MAX Series [EB/OL]. http://www.mitsubishi-shindoh.com/en/products/material/max.html
[25] Industries PMX, Inc.Alloy C7026[EB/OL]. http://www.ipmx.com/high/pdf/C7026.pdf
[26] Industries PMX, Inc. Alloy C19010 [EB/OL]. http://www.ipmx.com/high/pdf/19010blue.pdf
[27] Zhang X N, Wang Q, Chen B,et al. Influence of the amount of solute elements (Ni, Sn) on the electrical conductivity of Cu-Ni-Sn alloys [J]. Mater. Rev., 2015, 29(18): 13
[27] (张显娜, 王 清, 陈 勃等. 溶质元素(Ni, Sn)总量对Cu-Ni-Sn合金导电性能的影响 [J]. 材料导报, 2015, 29(18): 13)
[28] Dong C, Wang Q, Qiang J B ,et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40DR273
[29] Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
[29] (董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293)
[30] Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys [J]. Sci. Rep., 2014, 4: 7065
[31] Pang C, Wang Q, Zhang R Q ,et al. β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng., 2015, A626: 369
[32] Wang Z R, Qiang J B, Wang Y M ,et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
[33] Wang Q, Ma Y, Jiang B B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties [J]. Scr. Mater., 2016, 120: 85
[34] Li D M, Wang Q, Jiang B B, et al. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach [J]. Prog. Nat. Sci., 2017, 27: 467
[35] Zhang Y, Wang Q, Dong H G ,et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900 ℃ [J]. Acta Metall. Sin., 2018, 54: 591
[35] (张 宇, 王 清, 董红刚等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为 [J]. 金属学报, 2018, 54: 591)
[36] Geng Y X, Wang Y M, Qiang J B ,et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
[36] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459)
[37] Yamamoto K, Sasaki H, Odasin M ,et al. Development and characteristics of high strength lead frame material HCL 305 [J]. J.Jpn. Copper Brass Res. Assoc., 1999, 38: 204
[38] Jia L, Xie H, Lu Z L ,et al. Research on the optimization of Ni/Si atomic ratio for Cu-Ni-Si alloys with high strength and high electrical conductivity [J]. Mater. Sci. Forum, 2011, 695: 344
[39] Wang H S, Chen H G, Gu J W ,et al. Improvement in strength and thermal conductivity of powder metallurgy produced Cu-Ni-Si-Cr alloy by adjusting Ni/Si weight ratio and hot forging [J]. J. Alloys Compd., 2015, 633: 59
[40] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[41] Lee E, Euh K, Han S Z ,et al. Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti Alloys [J]. Met. Mater. Int., 2013, 19: 183
[42] Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of super high strength Cu-5.2Ni-1.2Si alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1821
[42] (潘志勇, 汪明朴, 李 周等. 超高强度Cu-5.2Ni-1.2Si合金的形变热处理 [J]. 中国有色金属学报, 2007, 17: 1821)
[43] Pan Z Y, Wang M P, Li Z, et al. Effect of trace elments on properties of Cu-Ni-Si alloy [J]. Mater. Rev., 2007, 21: 86
[43] (潘志勇, 汪明朴, 李 周等. 添加微量元素对Cu-Ni-Si合金性能的影响 [J]. 材料导报, 2007, 21: 86)
[44] Wang D F, Kang B X, Liu P ,et al. Development and application of materials [J]. Dev. Appl. Mater., 2003, 18(2): 4
[44] (王东锋, 康布熙, 刘 平等. Cu-Ni-Si合金的时效与析出研究 [J]. 材料开发与应用, 2003, 18(2): 4)
[45] Ren W, Jia S G, Liu P, et al. Effect of solution temperature on properties of Cu-Ni-Si alloy [J]. Hot Work. Technol., 2009, 38(8): 121
[45] (任 伟, 贾淑果, 刘 平等. 固溶温度对Cu-Ni-Si合金性能的影响 [J]. 热加工工艺, 2009, 38(8): 121)
[46] Gaskell P H. On the density of transition metal-metalloid glasses [J]. Acta Metall., 1981, 29: 1203
[47] Zhao D M, Dong Q M, Liu P ,et al. Structure and strength of the age hardened Cu-Ni-Si alloy [J]. Mater. Chem. Phys., 2003, 79: 81
[48] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 421
[48] (胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 421)
[49] Tian S. Material Physical Properties [M]. Beijing: Beihang University Press, 2001: 39
[49] (田 莳. 材料物理性能 [M]. 北京: 北京航空航天大学出版社, 2001: 39)
[50] Xiao X P, Yi Z Y, Chen T T,et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. J. Alloys Compd., 2016, 660: 178
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[10] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[11] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[12] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[13] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[14] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[15] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.