Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 947-952     
  论文 本期目录 | 过刊浏览 |
不同温度轧制多晶铝的微观组织与晶界分布
张新明 邓运来 刘 瑛 唐建国 周卓平
中南大学材料科学与工程学院; 长沙 410083
MICROSTRUCTURES AND BOUNDARY DISTRIBUTIONS IN Al POLYCRYSTALS ROLLED AT DIFFERENT TEMPERATURES
ZHANG Xinming; DENG Yunlai; LIU Ying; TANG Jianguo; ZHOU Zhuoping
College of Materials Science and Engineering; Central South University; Changsha 410083
引用本文:

张新明; 邓运来; 刘瑛; 唐建国; 周卓平 . 不同温度轧制多晶铝的微观组织与晶界分布[J]. 金属学报, 2005, 41(9): 947-952 .
, , , , . MICROSTRUCTURES AND BOUNDARY DISTRIBUTIONS IN Al POLYCRYSTALS ROLLED AT DIFFERENT TEMPERATURES[J]. Acta Metall Sin, 2005, 41(9): 947-952 .

全文: PDF(340 KB)  
摘要: 采用SEM-EBSD技术测试了室温和180 ℃条件下80%压下量轧制高纯铝样品的微取向分布. 结果表明: 平行于轧向的形变组织可分为取向分布集中和取向散布的带状组织. 前者取向主要聚集于β-取向线,其中Br-取向({011}<211>)的小角度(2°—5°)晶界面积率比S-({123}<634>和C-({112}<111>)取向的大10%—15%;随轧制温度从室温升至180 ℃,回复程度增强,中等角度(5°—15°)晶界面积率约升高10%. 用Bishop-Hill晶体塑性理论分析β-取向线组织的塑性变形储能差异表明,取向的Taylor因子M越小,5个独立活化滑移系的组合数越多,其变形储能就越小,小角度晶界比例亦越大.
关键词 多晶铝轧制微观组织     
Abstract:The orientation imaging micrographs (OIMs) in high purity aluminum rolled to 80% under room temperature and 180 ℃ were investigated using the SEM-EBSD technique. It was found that the elongated bands parallel to the rolling direction (RD) have two morphologies-the orientation concentrated and the orientation scattered, the orientations of the former mainly rotated toward β-fibre, and the area fraction of the low angle (2°---5°) boundaries in the bands with the Br-({011}<211>) orientation was about 10%--15% larger than those of the S-({123}<634>) and C-({112}<111>) orientations. When the rolling temperature changed from the room temperature to 180 ℃, the area fraction of the middle angle (5°---15°) boundaries was increased by about 10% because of stronger recovery during rolling at 180 ℃. The energy difference of the boundary distributions for the orientations along the β-fibre has been analyzed in term of Bishop-Hill crystal plasticity theory. It is shown that the orientations with smaller values of Taylor factor M and larger combination numbers of 5 independent active systems correspond to less boundary energy and lower angle boundary during rolling.
Key wordsAl polycrystal    rolled    microstructure    boundary
收稿日期: 2005-01-18     
ZTFLH:  TG111.7  
[1] Doherty R D,Hughes D A,Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[2] Gottstein G. Mater Sci Froum, 2002; 408: 1
[3] Bunge H-J. Mathematische Methoden der Texturanalyse. Berlin: Akademie-Verlag, 1969: 4
[4] Sevillano J G, van Houtte P, Aernoudt E. Prog Mater Sci, 1980; 25: 69
[5] Hirsch J, Lucke K.Acta Metall, 1988; 36: 2883
[6] Chen Z Y, Zhang X M, Du Y X, Yao Z Y, Liu C M. Mater Sci Forum, 2002; 408: 475
[7] Deng Y L, Zhang X M, Liu Y, Tang J G, Zhou Z P. Chin J Nonferrous Met, 2002; 12: 634 (邓运来,张新明,刘 瑛,唐建国,周卓平.中国有色金属学 报, 2002;12:634)
[8] Delannay L, Mishin O V, Jensen D J, van Houtte P. Acta Mater, 2001; 49: 2441
[9] Wu G L, Liu W, Godfrey A, Liu Q. Acta Metall Sin, 2004; 40: 699 (吴桂林,刘伟,Godfrey A,刘庆.金属学报,2004;40: 699)
[10] Wang Y N, Wu B L, Wang G, Jiang Q W, Zhao X, Zuo L. Acta Metall Sin, 2002; 38: 1085 (王轶农,武保林,王刚,蒋奇武,赵骧,左良.金属学 报,2002;38:1085)
[11] OIM?Analysis For Windows User Manual. TexSEM Lab. Inc., Mahwah, USA, 1998
[12] Bishop J F W, Hill R. Philos Mag, 1951; 42: 414
[13] Bishop J F W, Hill R. Philos Mag, 1951; 42: 1298
[14] Chen Z Y, Zhang X M, Liu C M, Li S Y, Zhou Z P, Yang Y. Acta Metall Sin, 2000; 36: 1121 (陈志永,张新明,刘楚明,李赛毅,周卓平,杨 扬.金属学 报,2000;36:1121)
[15] Huang Y, Humphreys F J. Acta Mater, 2000; 48: 2017
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[13] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.