Please wait a minute...
金属学报  2005, Vol. 41 Issue (1): 1-8     
  论文 本期目录 | 过刊浏览 |
小尺度材料的疲劳研究进展
张广平 王中光
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳110016
Progress in Fatigue of Small Dimensional Materials
ZHANG Guangping; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese
引用本文:

张广平; 王中光 . 小尺度材料的疲劳研究进展[J]. 金属学报, 2005, 41(1): 1-8 .
, . Progress in Fatigue of Small Dimensional Materials[J]. Acta Metall Sin, 2005, 41(1): 1-8 .

全文: PDF(559 KB)  
摘要: 小尺度材料广泛应用于微电子机械系统及大规模集成电路等微/纳米系统中. 由于这些材料的几何尺度和微观结构尺度均在微米至纳米范围, 它们对位错行为的约束作用以及表面和界面的影响导致了其疲劳行为与块体材料不同. 本文就近年来国内外开展的有关小尺度材料(如薄膜材料)疲劳实验方法、循环形变行、疲劳裂纹的萌生以及扩展行为进行了综述, 对相关的疲劳尺寸效应及机理进行了探讨, 并对今后这一领域的研究前景及方向进行了展望.
关键词 小尺度材料疲劳损伤尺寸效应    
Abstract:Small dimensional materials are widely used in micro/nano--systems, such as large scale integrated circuits and microelectromechanical systems (MEMS). Since the geometric and microstructural dimensions of the materials are ranged from microns to nanometers, the constraints of the dimensions on dislocation activities and the effects of surfaces and interfaces in the small dimensional materials result in fatigue behaviors different from that of the bulk materials. In this paper, fatigue testing methods, cyclic deformation, crack initiation and propagation behaviors of the small dimensional materials studied in recent years, such as thin films, are reviewed. The corresponding fatigue size effects and damage mechanisms are discussed. The prospective research directions of fatigue of small dimensional materials in the future are forecasted.
Key wordsSmall dimensional materials    Thin films    Fatigue damage    Size effect
收稿日期: 2004-07-20     
ZTFLH:  TG111.8  
[1] Menz W, Mohr J, Paul O. Microsystem Technology. Wein-heim: WILEY-VCH, 2001: 1
[2] Spearing S M. Acta Mater, 2000; 48: 179
[3] Ohring M. Reliability and Failure of Electronic Materialsand Devices. Academic Press, 1998: 4
[4] Nix W D. Metall Trans, 1989; 20A: 2217
[5] Arzt E. Acta Mater, 1998; 46: 5611
[6] Keller R M, Baker S P, Arzt E. J Mater Res, 1998; 13:1307
[7] Hommel M, Kraft O. Acta Mater, 2001; 49: 3935
[8]Suresh S,Translated by Wang Z G.Fatigue of Materials. Beijing:National Defense Industry Press,1999:37 (Suresh S著,王中光译.材料的疲劳(第二版).北京:国防 工业出版社,1999:37)
[9] Grosskreutz J C, Mughrabi H. In: Argon A S ed, Constitutive Equations in Plasticity Cambridge, MA: The MIT Press, 1975: 251
[10] Sharpe Jr W N, Yuan B, Edwards R L. J Microelec-tromechan Syst, 1997; 6: 193
[11] Tsuchiya T, Tabata O, Sakata J, Taga Y. In: Proceedings of IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems. 1997: 529
[12] Kapels H, Aigner R, Binder J. IEEE Trans Electron Devices, 2000; 47: 1522
[13] Judelewicz M. Scr Metall Mater, 1993; 29: 1463
[14] Hommel M, Kraft O, Arzt E. J Mater Res, 1999; 14: 2373
[15] Brown S B, van Arsdell W, Muhlstein C L. In: Transducers-97: Int Conf on Solid State Sensors and Actuators, Chicage, Illinois: Digest of Technical Papers, 1997: 591
[16] Kahn H, Ballarini R, Mullen R L, Heuer A H. Proc RoyalSoc London, 1999; 455: 3807
[17] Schwaiger R, Kraft O. Scr Mater, 1999; 41: 823
[18] Takashima K, Maekawa S, Shimojo M, Higo Y, SugiuraS, Pfister B, Swain M V. In: Wu X R, Wang Z G eds,Proceedings of the 7th International Fatigue Congress,Cradley Heath, UK: High Education Press, 1999; 3: 1871
[19] Zhang G P, Takashima K, Shimojo M, Higo Y. Mater Lett,2003; 57(1): 1555
[20] Connally J A, Brown S B. Exp Mechan, 1992; 32: 81
[21] Muhlstein C L, Stach E A, Ritchie R O. Appl Phy Lett,2002; 80: 1532
[22] Muhlstein C L, Brown H B, Ritchie R O. Sens Actuators,2001; 94: 177
[23] Allameh S M, Gaily B, Brown S, Soboyejo W O. ASTMSTP 1413, West Conshohocken, 2000
[24] Hofbeck R, Hausmann K, Ilschner B, Kuenzi H U. ScrMetall, 1986; 20: 1601
[25] Judelewicz M, Kunzi H U, Merk N, Ilschner B. Mater SciEng, 1994; A186: 135
[26] Hong S, Weil R. Thin Solid Films, 1996; 283: 175
[27] Read D T. Int J Fatigue, 1998; 20: 203
[28] Merchant H D, Minor M G, Liu Y L. J Electron Mater,1999; 28: 998
[29] Hadrboletz A, Kathibi G, Weiss B, Stickler R. In: Wu XR, Wang Z G eds, Proceedings of the 7th InternationalFatigue Congress, Cradley Heath, UK: High EducationPress, 1999: 1865
[30] Schwaiger R, Dehm G, Kraft O. Philos Mag, 2003; 83: 693
[31] Kraft O, Schwaiger R, Wellner P. Mater Sci Eng, 2001; A319-321: 919
[32] Kraft O, Wellner P, Hommel M, Schwaiger R, Arzt E. ZMetallkd, 2002; 93(5): 392
[33] Schwaiger R, Kraft O. Acta Mater, 2003; 51(1): 195
[34] Zhang G P, Schwaiger R, Volkert C A, Kraft O. PhilosMag Lett, 2003; 83: 477
[35] Maekawa S, Takashima K, Shimojo M, Higo Y. Jpn J ApplPhys, 1999; 38: 7194
[36] Takashima K, Higo Y, Sugiura S, Shimojo M. MaterTrans, 2001; 42: 68
[37] Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O.Accepted by J Mater Res, 2005; 20(1): 201
[38] Zhang G P, Takashima K, Higo Y. Acta Metall Sin , inpress(张广平,高岛和希,肥後失吉.金属学报,待发表)
[39] Mughrabi M, Wang R, Differt K, Essmann U. ASTM STP811, 1983: 5
[40] Zhang G P, Volkert C A, Schwaiger R, Wellner P, Arzt E,Kraft O. to be published
[41] Freund L B. J Appl Mech, 1987; 54: 553
[42] Thiele E, Holste C, Klemm R. Z Metallkd, 2002; 93: 730
[43] Tang M J, Xu J S, Cai W, Bulatov V. Mater Res SocSymp Proc, 2003; 795: U2.4.1
[44] Gao H, Huang Y, Nix W D, Hutchinson J W. J Mech PhysSolids, 2000; 48: 99.
[45] Hwang K C, Jiang H, Huang Y, Gao H, Hu N. J MechPhys Solids, 2002; 50: 81.
[46] Chen S H, Wang Z Q. Adv Mech, 2003; 33: 407(陈少华,王自强.力学进展, 2003;33:407)
[47] Stoken J S, Evans A G. Acta Mater, 1998; 46: 5109
[48] Liu Y, Ngan A H W. Scr Mater, 2001; 44: 237
[49] Ashby M F. Philos Mag, 1970; 21: 399
[50] Zhang G P, Moenig R, Park Y B, Arzt E, Volkert C A. tobe published, 2005
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[5] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[6] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[7] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[8] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[9] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[10] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[11] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[12] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[13] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[14] 张金钰 张欣 牛佳佳 刘刚 张国君 孙军. Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47(10): 1348-1354.
[15] 尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.