Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 169-182    DOI: 10.3724/SP.J.1037.2013.00599
  论文 本期目录 | 过刊浏览 |
纳米金属多层膜的变形与断裂行为及其尺寸效应*
张金钰 刘 刚 孙 军
(西安交通大学金属材料强度国家重点实验室, 西安 710049)
SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Jinyu, LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049
全文: PDF(963 KB)   HTML
摘要: 如何有效地协调和平衡材料强度与韧性之间的矛盾, 大幅提高结构材料的损伤容限, 是设计微观结构敏感性材料的巨大挑战. 纳米金属多层膜材料由于其灵活可调控的微观结构特征以及优异的力学性能已成为目前高性能微元器件以及互连结构的核心材料体系, 其服役过程中的变形损伤与断裂是导致系统失效的关键因素. 本文结合当前国内外有关金属多层膜塑性变形与断裂行为研究的最新进展, 阐述了金属多层膜(微柱体)微观结构-尺寸约束-服役性能三者之间的关联性, 揭示了金属多层膜(微柱体)变形与断裂模式的内在规律及机制, 并对金属多层膜研究的发展趋势进行了展望.
关键词 纳米金属多层膜塑性变形断裂行为尺寸效应界面    
Abstract:How to defeat the conflict of strength vs toughness and achieve unprecedented levels of damage tolerance within structural materials is a great challenge for designing microstructure-sensitive materials. The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures owing to their smart, tunable internal features and their outstanding mechanical properties. The deformation and fracture of NMMs during their service processes has been identified as an important factor influencing their reliability. The present authors had systematically investigated the size and interface effects on the mechanical properties, such as hardness/strength, tensile ductility, fracture toughness, deformation and fracture mechanisms of Cu/X (X=Cr, Nb, Zr) nanolayered films/micropillars, in addition to their microstructure evolution. In this paper, based on these experimental results achieved by the present authors, as well as the progresses at home and abroad made in the deformation and fracture behavior of NMMs, the correlation of microstructure-size constraint-mechanical performance in NMMs (and nanolayered micropillars) is reviewed, and the universities in their deformation and fracture modes and the related mechanisms are revealed. Finally, a brief prospect on the studies of NMMs in future in the light of manipulation of the internal features, origin and dynamics of dislocations and the high performance of NMMs at extreme is discussed.
Key wordsKEYWORDS nanostructured metallic multilayer    plastic deformation    fracture behavior    size effect    interface
    
ZTFLH:  TG113  
基金资助:* 国家重点基础研究发展计划项目2010CB631003, 国家自然科学基金项目51321003, 51322104和51201123, 高等学校学科创新引智计划B06025以及中国博士后科学基金项目2012M521765资助
Corresponding author: LIU Gang, professor, Tel: (029)82668695, E-mail: lgsammer@mail.xjtu.edu.cn   
作者简介: 张金钰, 男, 1982年生, 讲师

引用本文:

张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
ZHANG Jinyu, LIU Gang, SUN Jun. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS. Acta Metall Sin, 2014, 50(2): 169-182.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00599      或      https://www.ams.org.cn/CN/Y2014/V50/I2/169

[1] Romig Jr A D, Dugger M T, McWhorter P J. Acta Mater, 2003; 51: 5837
[2] Bakonyi I, Péter L. Prog Mater Sci, 2010; 55: 107
[3] Demkowicz M J, Misra A, Caro A. Curr Opin Solid State Mater Sci, 2012; 16: 101
[4] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R. Prog Mater Sci, 2010; 55: 477
[5] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1
[6] Nan C W. Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
(南策文. 非均质材料物理: 显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[7] Cammarata R C. Prog Surf Sci, 1994; 46: 1
[8] Rao S I, Hazzledine P M. Phil Mag, 2000; 80A: 2011
[9] Chen Y, Liu Y, Sun C, Yu K Y, Song M, Wang H, Zhang X. Acta Mater, 2012; 60: 6312
[10] Liu Y, Bufford D, Wang H, Sun C, Zhang X. Acta Mater, 2011; 59: 1924
[11] Liu Y, Chen Y, Yu K Y, Wang H, Chen J, Zhang X. Int J Plast, 2013; 49: 152
[12] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A545: 118
[13] Banerjee R, Ahuja R, Fraser H L. Phy Rev Lett, 1996; 76: 3778
[14] Thompson G B, Banerjee R, Dregia S A, Fraser H L. Acta Mater, 2003; 51: 5285
[15] Dregia S A, Banerjee R, Fraser H L. Scr Mater, 1998; 39: 217
[16] Bruinsma R, Zangwill A M. J Phy, 1986; 47: 2055
[17] Redfield A C, Zangwill A M. Phys Rev, 1986; 34B: 1378
[18] Clemens B M, Kung H, Barnett S A. MRS Bull, 1999; 24: 20
[19] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877
[20] Carpenter J S, Misra A, Uchic M D, Anderson P M. Appl Phys Lett, 2012; 101: 051901
[21] Carpenter J S, Misra A, Anderson P M. Acta Mater, 2012; 60: 2625
[22] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[23] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101
[24] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E. Scr Mater, 2010; 62: 333
[25] Hoagland R G, Kurtz R J, Henager C H. Scr Mater, 2004; 50: 775
[26] Hoagland R G, Mitchell T E, Hirth J P, Kung H. Phil Mag, 2002; 82A: 643
[27] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A. Appl Phys Lett, 2010; 97: 021909
[28] Wang J, Hoagland R G, Hirth J P, Misra A. Acta Mater, 2008; 56: 5685
[29] Wang J, Misra A, Hoagland R G, Hirth J P. Acta Mater, 2012; 60: 1503
[30] Clemens B M, Nix W D, Ramaswamy V. J Appl Phys, 2000; 87: 2816
[31] Lee H J, Kwon K W, Ryu C, Sinclair R. Acta Mater, 1999; 47: 3965
[32] Ouyang G, Wang C X, Yang G W. Appl Phys Lett, 2005; 86: 171914
[33] Lai W S, Yang M J. Appl Phys Lett, 2007; 90: 181917
[34] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[35] Zhang J Y, Zhang X, Niu J J, Liu G, Zhang G J, Sun J. Acta Metall Sin, 2011; 47: 1348
(张金钰, 张 欣, 牛佳佳, 刘 刚, 张国君, 孙 军. 金属学报, 2011; 47: 1348)
[36] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[37] Cheng Y Q, Ma E. Prog Mater Sci, 2011; 56: 379
[38] Jang D, Greer J R. Nat Mater, 2010; 9: 215
[39] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E. Nat Mater, 2007; 6: 735
[40] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J, Ma E. Nat Commun, 2012; 3: 609
[41] Wang Y M, Li J, Hamza A V, Barbee J T W. Proc Natl Acad Sci USA, 2007; 104: 11155
[42] Kim J J, Choi Y, Suresh S, Argon A S. Science, 2002; 295: 654
[43] Chen H, He Y, Shiflet G, Poon S. Nature, 1994; 367: 541
[44] Zhang J Y, Liu G, Sun J. Sci Rep, 2013; 3: 2324
[45] Koehler J S. Phys Rev, 1970; 2B: 547
[46] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[47] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[48] Wen S, Zong R, Zeng F, Gao Y, Pan F. Acta Mater, 2007; 55: 345
[49] Fu E G, Li N, Misra A, Hoagland R G, Wang H, Zhang X. Mater Sci Eng, 2008; A493: 283
[50] Wei Q M, Li N, Mara N, Nastasi M, Misra A. Acta Mater, 2011; 59: 6331
[51] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[52] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F. Mater Sci Eng, 2010; A527: 1243
[53] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593
[54] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. J Mater Res, 2011; 22: 3423
[55] Yu K Y, Liu Y, Rios S, Wang H, Zhang X. Surf Coat Technol, 2013; 237: 269
[56] Schweitz K O, Chevallier J, Bottiger J, Matz W, Schell N. Phil Mag, 2001; 81A: 2021
[57] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J. Mater Sci Eng, 2012; A552: 392
[58] Wen S, Zeng F, Gao Y, Pan F. Scr Mater, 2006; 55: 187
[59] Knorr I, Cordero N M, Lilleodden E T, Volkert C A. Acta Mater, 2013; 61: 4984
[60] Anderson P M, Li C. Nanostruct Mater, 1995; 5: 349
[61] Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Woodward C. Acta Mater, 2013; 61: 2500
[62] Embury J D, Hirth J P. Acta Metall Mater, 1994; 42: 2051
[63] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3157
[64] Misra A, Hirth J P, Kung H. Phil Mag, 2002; 82A: 2935
[65] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J. Scr Mater, 2007; 57: 117
[66] Greer J R, De Hosson J T M. Prog Mater Sci, 2011; 56: 654
[67] Kraft O, Gruber P A, M?nig R, Weygand D. Annu Rev Mater Res, 2010; 40: 293
[68] Uchic M D, Shade P A, Dimiduk D M. Annu Rev Mater Res, 2009; 39: 361
[69] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J. Acta Mater, 2012; 60: 7183
[70] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[71] Zhang J Y, Lei S, Niu J, Liu Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 4054
[72] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A. Appl Phys Lett, 2008; 92: 231901
[73] Wang J, Yang C, Hodgson P D. Scr Mater, 2013; 69: 626
[74] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A. J Mater Res, 2012; 27: 592
[75] Han S M, Phillips M A, Nix W D. Acta Mater, 2009; 57: 4473
[76] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[77] Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
[78] Zhang J Y, Cui J C, Liu G, Sun J. Scr Mater, 2013; 68: 639
[79] Gu X W, Loynachan C N, Wu Z, Zhang Y W, Srolovitz D J, Greer J R. Nano Lett, 2012; 12: 6385
[80] Tschopp M A, McDowell D L. Appl Phys Lett, 2007; 90
[81] Cheng S, Spencer J A, Milligan W W. Acta Mater, 2003; 51: 4505
[82] Huang H, Spaepen F. Acta Mater, 2000; 48: 3261
[83] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874
[84] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J. Acta Mater, 2011; 59: 7368
[85] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 2982
[86] Kim J Y, Jang D C, Greer J R. Adv Funct Mater, 2011; 21: 4550
[87] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[88] Niu R M, Liu G, Wang C, Zhang G, Ding X D, Sun J. Appl Phys Lett, 2007; 90: 161907
[89] Zhang J Y, Wu K, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. J Appl Phys, 2012; 111: 113519
[90] Arsenault R J, Fishman S, Taya M. Prog Mater Sci, 1994; 38: 1
[91] Pei H J, Lee C J, Du X H, Chang Y C, Huang J C. Mater Sci Eng, 2011; A528: 7317
[92] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 3rd Ed., New York: John Wiley & Sons Inc, 1989: 1
[93] Chan K S, Kim Y W. Acta Metall Mater, 1995; 43: 439
[94] Cao H C, Evans A G. Acta Metall Mater, 1991; 39: 2997
[95] Hsia K J, Suo Z, Yang W. J Mech Phys Solids, 1994; 42: 877
[96] Huang Y, Zhang H W, Wu F. Int J Solids Struct, 1994; 31: 2753
[97] Huang Y, Zhang H W. Acta Metall Mater, 1995; 43: 1523
[98] Shaw M C, Clyne T W, Cocks A C F, Fleck N A, Pateras S K. J Mech Phys Solids, 1996; 44: 801
[99] Hwu K L, Derby B. Acta Mater, 1999; 47: 545
[100] Hwu K L, Derby B. Acta Mater, 1999; 47: 529
[101] Lloyd D J. Scr Mater, 2003; 48: 341
[102] Jain M, Allin J, Lloyd D J. Int J Mech Sci, 1999; 41: 1273
[103] Cockcroft M G, Latham D J. J Inst Met, 1968; 96: 33
[104] Zhang J Y, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A554: 116
[105] Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 7774
[106] Gruber P A, Arzt E, Spolenak R. J Mater Res, 2009; 24: 1906
[107] Misra A, Hoagland R G. J Mater Sci, 2007; 42: 1765
[108] Wang F, Huang P, Xu M, Lu T J, Xu K W. Mater Sci Eng, 2011; A528: 7290
[109] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P. J Mater Res, 2009; 24: 728
[110] Li Y P, Zhu X F, Tan J, Wu B, Zhang G P. Philos Mag Lett, 2009; 89: 66
[111] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A. J Mater Res, 2009; 24: 1291
[112] Wen S P, Zeng F, Pan F, Nie Z R. Mater Sci Eng, 2009; A526: 166
[113] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A. Scr Mater, 2011; 64: 974
[114] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M. Thin Solid Films, 2011; 519: 3213
[115] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905
[116] Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J. Philos Mag Lett, 2010; 90: 413
[117] Niu J J, Zhang P, Wang R H, Zhang J Y, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A539: 68
[118] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J. Acta Mater, 2012; 60: 3677
[119] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X. J Appl Phys, 2012; 111: 073526
[120] Bufford D, Bi Z, Jia Q X, Wang H, Zhang X. Appl Phys Lett, 2012; 101: 223112
[121] Zhang J Y, Liu G, Sun J. Acta Mater, 2013; 61: 6868
[122] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J. Scr Mater, 2012; 66: 706
[123] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[2] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[3] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[4] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[5] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[6] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[7] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[8] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[9] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[10] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[11] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[14] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[15] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.