Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 169-182    DOI: 10.3724/SP.J.1037.2013.00599
  本期目录 | 过刊浏览 |
纳米金属多层膜的变形与断裂行为及其尺寸效应*
张金钰(), 刘刚, 孙军
西安交通大学金属材料强度国家重点实验室, 西安 710049
SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Jinyu(), LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049
引用本文:

张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
Jinyu ZHANG, Gang LIU, Jun SUN. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS[J]. Acta Metall Sin, 2014, 50(2): 169-182.

全文: PDF(963 KB)   HTML
摘要: 

如何有效地协调和平衡材料强度与韧性之间的矛盾, 大幅提高结构材料的损伤容限, 是设计微观结构敏感性材料的巨大挑战. 纳米金属多层膜材料由于其灵活可调控的微观结构特征以及优异的力学性能已成为目前高性能微元器件以及互连结构的核心材料体系, 其服役过程中的变形损伤与断裂是导致系统失效的关键因素. 本文结合当前国内外有关金属多层膜塑性变形与断裂行为研究的最新进展, 阐述了金属多层膜(微柱体)微观结构-尺寸约束-服役性能三者之间的关联性, 揭示了金属多层膜(微柱体)变形与断裂模式的内在规律及机制, 并对金属多层膜研究的发展趋势进行了展望.

关键词 纳米金属多层膜塑性变形断裂行为尺寸效应界面    
Abstract

How to defeat the conflict of strength vs toughness and achieve unprecedented levels of damage tolerance within structural materials is a great challenge for designing microstructure-sensitive materials. The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures owing to their smart, tunable internal features and their outstanding mechanical properties. The deformation and fracture of NMMs during their service processes has been identified as an important factor influencing their reliability. The present authors had systematically investigated the size and interface effects on the mechanical properties, such as hardness/strength, tensile ductility, fracture toughness, deformation and fracture mechanisms of Cu/X (X=Cr, Nb, Zr) nanolayered films/micropillars, in addition to their microstructure evolution. In this paper, based on these experimental results achieved by the present authors, as well as the progresses at home and abroad made in the deformation and fracture behavior of NMMs, the correlation of microstructure-size constraint-mechanical performance in NMMs (and nanolayered micropillars) is reviewed, and the universities in their deformation and fracture modes and the related mechanisms are revealed. Finally, a brief prospect on the studies of NMMs in future in the light of manipulation of the internal features, origin and dynamics of dislocations and the high performance of NMMs at extreme is discussed.

Key wordsnanostructured metallic multilayer    plastic deformation    fracture behavior    size effect    interface
收稿日期: 2013-09-22     
ZTFLH:  TG113  
基金资助:* 国家重点基础研究发展计划项目2010CB631003, 国家自然科学基金项目51321003, 51322104和51201123, 高等学校学科创新引智计划B06025以及中国博士后科学基金项目2012M521765资助
作者简介: null

张金钰, 男, 1982年生, 讲师

图1  
图2  
图3  
图4  
图5  
[1] Romig Jr A D, Dugger M T, McWhorter P J. Acta Mater, 2003; 51: 5837
[2] Bakonyi I, Péter L. Prog Mater Sci, 2010; 55: 107
[3] Demkowicz M J, Misra A, Caro A. Curr Opin Solid State Mater Sci, 2012; 16: 101
[4] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R. Prog Mater Sci, 2010; 55: 477
[5] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1
[6] Nan C W. Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
[6] (南策文. 非均质材料物理: 显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[7] Cammarata R C.Prog Surf Sci, 1994; 46: 1
[8] Rao S I, Hazzledine P M. Phil Mag, 2000; 80A: 2011
[9] Chen Y, Liu Y, Sun C, Yu K Y, Song M, Wang H, Zhang X. Acta Mater, 2012; 60: 6312
[10] Liu Y, Bufford D, Wang H, Sun C, Zhang X. Acta Mater, 2011; 59: 1924
[11] Liu Y, Chen Y, Yu K Y, Wang H, Chen J, Zhang X. Int J Plast, 2013; 49: 152
[12] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A545: 118
[13] Banerjee R, Ahuja R, Fraser H L. Phy Rev Lett, 1996; 76: 3778
[14] Thompson G B, Banerjee R, Dregia S A, Fraser H L. Acta Mater, 2003; 51: 5285
[15] Dregia S A, Banerjee R, Fraser H L. Scr Mater, 1998; 39: 217
[16] Bruinsma R, Zangwill A M. J Phy, 1986; 47: 2055
[17] Redfield A C, Zangwill A M. Phys Rev, 1986; 34B: 1378
[18] Clemens B M, Kung H, Barnett S A. MRS Bull, 1999; 24: 20
[19] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877
[20] Carpenter J S, Misra A, Uchic M D, Anderson P M. Appl Phys Lett, 2012; 101: 051901
[21] Carpenter J S, Misra A, Anderson P M. Acta Mater, 2012; 60: 2625
[22] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[23] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101
[24] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E. Scr Mater, 2010; 62: 333
[25] Hoagland R G, Kurtz R J, Henager C H. Scr Mater, 2004; 50: 775
[26] Hoagland R G, Mitchell T E, Hirth J P, Kung H. Phil Mag, 2002; 82A: 643
[27] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A. Appl Phys Lett, 2010; 97: 021909
[28] Wang J, Hoagland R G, Hirth J P, Misra A. Acta Mater, 2008; 56: 5685
[29] Wang J, Misra A, Hoagland R G, Hirth J P. Acta Mater, 2012; 60: 1503
[30] Clemens B M, Nix W D, Ramaswamy V. J Appl Phys, 2000; 87: 2816
[31] Lee H J, Kwon K W, Ryu C, Sinclair R. Acta Mater, 1999; 47: 3965
[32] Ouyang G, Wang C X, Yang G W. Appl Phys Lett, 2005; 86: 171914
[33] Lai W S, Yang M J. Appl Phys Lett, 2007; 90: 181917
[34] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[35] Zhang J Y, Zhang X, Niu J J, Liu G, Zhang G J, Sun J. Acta Metall Sin, 2011; 47: 1348
[35] (张金钰, 张 欣, 牛佳佳, 刘 刚, 张国君, 孙 军. 金属学报, 2011; 47: 1348)
[36] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[37] Cheng Y Q, Ma E. Prog Mater Sci, 2011; 56: 379
[38] Jang D, Greer J R. Nat Mater, 2010; 9: 215
[39] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E. Nat Mater, 2007; 6: 735
[40] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J, Ma E. Nat Commun, 2012; 3: 609
[41] Wang Y M, Li J, Hamza A V, Barbee J T W. Proc Natl Acad Sci USA, 2007; 104: 11155
[42] Kim J J, Choi Y, Suresh S, Argon A S. Science, 2002; 295: 654
[43] Chen H, He Y, Shiflet G, Poon S. Nature, 1994; 367: 541
[44] Zhang J Y, Liu G, Sun J. Sci Rep, 2013; 3: 2324
[45] Koehler J S. Phys Rev, 1970; 2B: 547
[46] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[47] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[48] Wen S, Zong R, Zeng F, Gao Y, Pan F. Acta Mater, 2007; 55: 345
[49] Fu E G, Li N, Misra A, Hoagland R G, Wang H, Zhang X. Mater Sci Eng, 2008; A493: 283
[50] Wei Q M, Li N, Mara N, Nastasi M, Misra A. Acta Mater, 2011; 59: 6331
[51] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[52] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F. Mater Sci Eng, 2010; A527: 1243
[53] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593
[54] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. J Mater Res, 2011; 22: 3423
[55] Yu K Y, Liu Y, Rios S, Wang H, Zhang X. Surf Coat Technol, 2013; 237: 269
[56] Schweitz K O, Chevallier J, Bottiger J, Matz W, Schell N. Phil Mag, 2001; 81A: 2021
[57] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J. Mater Sci Eng, 2012; A552: 392
[58] Wen S, Zeng F, Gao Y, Pan F. Scr Mater, 2006; 55: 187
[59] Knorr I, Cordero N M, Lilleodden E T, Volkert C A. Acta Mater, 2013; 61: 4984
[60] Anderson P M, Li C. Nanostruct Mater, 1995; 5: 349
[61] Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Woodward C. Acta Mater, 2013; 61: 2500
[62] Embury J D, Hirth J P. Acta Metall Mater, 1994; 42: 2051
[63] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3157
[64] Misra A, Hirth J P, Kung H. Phil Mag, 2002; 82A: 2935
[65] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J. Scr Mater, 2007; 57: 117
[66] Greer J R, De Hosson J T M. Prog Mater Sci, 2011; 56: 654
[67] Kraft O, Gruber P A, Mönig R, Weygand D. Annu Rev Mater Res, 2010; 40: 293
[68] Uchic M D, Shade P A, Dimiduk D M. Annu Rev Mater Res, 2009; 39: 361
[69] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J. Acta Mater, 2012; 60: 7183
[70] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[71] Zhang J Y, Lei S, Niu J, Liu Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 4054
[72] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A. Appl Phys Lett, 2008; 92: 231901
[73] Wang J, Yang C, Hodgson P D. Scr Mater, 2013; 69: 626
[74] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A. J Mater Res, 2012; 27: 592
[75] Han S M, Phillips M A, Nix W D. Acta Mater, 2009; 57: 4473
[76] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[77] Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
[78] Zhang J Y, Cui J C, Liu G, Sun J. Scr Mater, 2013; 68: 639
[79] Gu X W, Loynachan C N, Wu Z, Zhang Y W, Srolovitz D J, Greer J R. Nano Lett, 2012; 12: 6385
[80] Tschopp M A, McDowell D L. Appl Phys Lett, 2007; 90
[81] Cheng S, Spencer J A, Milligan W W. Acta Mater, 2003; 51: 4505
[82] Huang H, Spaepen F. Acta Mater, 2000; 48: 3261
[83] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874
[84] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J. Acta Mater, 2011; 59: 7368
[85] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 2982
[86] Kim J Y, Jang D C, Greer J R. Adv Funct Mater, 2011; 21: 4550
[87] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[88] Niu R M, Liu G, Wang C, Zhang G, Ding X D, Sun J. Appl Phys Lett, 2007; 90: 161907
[89] Zhang J Y, Wu K, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. J Appl Phys, 2012; 111: 113519
[90] Arsenault R J, Fishman S, Taya M. Prog Mater Sci, 1994; 38: 1
[91] Pei H J, Lee C J, Du X H, Chang Y C, Huang J C. Mater Sci Eng, 2011; A528: 7317
[92] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 3rd Ed., New York: John Wiley & Sons Inc, 1989: 1
[93] Chan K S, Kim Y W. Acta Metall Mater, 1995; 43: 439
[94] Cao H C, Evans A G. Acta Metall Mater, 1991; 39: 2997
[95] Hsia K J, Suo Z, Yang W. J Mech Phys Solids, 1994; 42: 877
[96] Huang Y, Zhang H W, Wu F. Int J Solids Struct, 1994; 31: 2753
[97] Huang Y, Zhang H W. Acta Metall Mater, 1995; 43: 1523
[98] Shaw M C, Clyne T W, Cocks A C F, Fleck N A, Pateras S K. J Mech Phys Solids, 1996; 44: 801
[99] Hwu K L, Derby B. Acta Mater, 1999; 47: 545
[100] Hwu K L, Derby B. Acta Mater, 1999; 47: 529
[101] Lloyd D J. Scr Mater, 2003; 48: 341
[102] Jain M, Allin J, Lloyd D J. Int J Mech Sci, 1999; 41: 1273
[103] Cockcroft M G, Latham D J. J Inst Met, 1968; 96: 33
[104] Zhang J Y, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A554: 116
[105] Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 7774
[106] Gruber P A, Arzt E, Spolenak R. J Mater Res, 2009; 24: 1906
[107] Misra A, Hoagland R G. J Mater Sci, 2007; 42: 1765
[108] Wang F, Huang P, Xu M, Lu T J, Xu K W. Mater Sci Eng, 2011; A528: 7290
[109] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P. J Mater Res, 2009; 24: 728
[110] Li Y P, Zhu X F, Tan J, Wu B, Zhang G P. Philos Mag Lett, 2009; 89: 66
[111] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A. J Mater Res, 2009; 24: 1291
[112] Wen S P, Zeng F, Pan F, Nie Z R. Mater Sci Eng, 2009; A526: 166
[113] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A. Scr Mater, 2011; 64: 974
[114] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M. Thin Solid Films, 2011; 519: 3213
[115] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905
[116] Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J. Philos Mag Lett, 2010; 90: 413
[117] Niu J J, Zhang P, Wang R H, Zhang J Y, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A539: 68
[118] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J. Acta Mater, 2012; 60: 3677
[119] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X. J Appl Phys, 2012; 111: 073526
[120] Bufford D, Bi Z, Jia Q X, Wang H, Zhang X. Appl Phys Lett, 2012; 101: 223112
[121] Zhang J Y, Liu G, Sun J. Acta Mater, 2013; 61: 6868
[122] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J. Scr Mater, 2012; 66: 706
[123] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[9] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[10] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[13] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[14] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[15] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.