Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 245-251    DOI: 10.3724/SP.J.1037.2013.00661
  本期目录 | 过刊浏览 |
搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*
薛鹏, 肖伯律, 马宗义()
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS
XUE Peng, XIAO Bolü, MA Zongyi()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

薛鹏, 肖伯律, 马宗义. 搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*[J]. 金属学报, 2014, 50(2): 245-251.
Peng XUE, Bolü XIAO, Zongyi MA. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS[J]. Acta Metall Sin, 2014, 50(2): 245-251.

全文: PDF(4287 KB)   HTML
摘要: 

通过强制冷却的搅拌摩擦加工(FSP)技术在Cu-Al合金中得到了超细晶和纳米结构的微观组织, 利用电子背散射衍射、透射电子显微镜等技术研究了层错能对FSP Cu-Al合金微观组织和力学性能的影响. 结果表明, FSP Cu-Al合金为均匀、等轴的再结晶组织, 随着层错能的减小, 晶粒尺寸不断降低, 而且在低层错能的FSP Cu-Al合金中, 超细晶粒内部生成了丰富的纳米孪晶片层组织, 进一步细化了微观组织. 由于微观组织的逐步细化, FSP Cu-Al合金的强度随层错能的降低逐步提高, 而均匀延伸率呈现出先增加后减小的趋势.

关键词 搅拌摩擦加工Cu-Al合金层错能纳米孪晶片层力学性能    
Abstract

Ultrafine-grained (UFG) and nanostructured (NS) materials have attracted considerable interest due to their special microstructure and mechanical properties. Severe plastic deformation is one of the optimum approaches to fabricate bulk, dense and contamination-free UFG and NS metallic materials. However, high density of dislocations and unstable microstructure were usually induced in these UFG and NS metallic materials, resulting in poor tensile plasticity and fatigue properties. In this study, bulk UFG and NS Cu-Al alloys were successfully prepared via friction stir processing (FSP) with additional forced water cooling. FSP Cu-Al alloys exhibited uniform recrystallized microstructure with equiaxed ultrafine grains, and the grain sizes reduced gradually as the stacking fault energy (SFE) decreased. Abundant nano-twin layers formed in the ultrafine grains of FSP Cu-Al alloys with low SFEs, which further refined the ultrafine grains and NS microstructure was achieved. The strength of the FSP Cu-Al alloys increased clearly with decreasing the SFEs due to the gradually refined microstructure, but the uniform elongation increased initially and then decreased in the Cu-Al alloy with the lowest SFE.

Key wordsfriction stir processing    Cu-Al alloy    stacking fault energy    nano-twin layer    mechanical property
收稿日期: 2013-10-18     
ZTFLH:  TG172  
基金资助:* 国家自然科学基金项目51071150, 51301178和51331008资助
作者简介: null

薛 鹏, 男, 1984年生, 助理研究员, 博士

图1  
图2  
图3  
图4  
图5  
[1] Valiev R. Nat Mater, 2004; 3: 511
[2] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[3] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[4] Mughrabi H, Höppel H W. Int J Fatigue, 2010; 32: 1413
[5] Goto M, Han S Z, Euh K, Kang J H, Kim S S. Acta Mater, 2010; 58: 6249
[6] An X H. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2012
[6] (安祥海. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[7] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[8] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[9] Ma Z Y. Metall Mater Trans, 2008; 39A: 642
[10] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[11] Su J Q, Nelson T W, Sterling C J. Scr Mater, 2005; 52: 135
[12] Xue P, Xiao B L, Ma Z Y. Scr Mater, 2013; 68: 751
[13] Chang C I, Du X H, Huang J C. Scr Mater, 2007; 57: 209
[14] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y. Mater Sci Eng, 2013; A575: 30
[15] Xue P, Xiao B L, Ma Z Y. J Mater Sci Technol, 2013; 29: 1111
[16] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[17] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[18] Zhang P, An X H, Zhang Z J, Wu S D, Li S X, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[19] Murr L E. Interfacial Phenomena in Metals and Alloys. Massachusetts: Addison-Wesley Publishing Company, 1975: 142
[20] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[21] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[22] Meyers M A,Chawla K K. Mechanical Behavior of Materials. 2nd Ed., Cambridge: Cambridge University Press, 2009: 337
[23] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[24] Jata K V, Semiatin S L. Scr Mater, 2000; 43: 743
[25] Su J Q, Nelson T W, Sterling C J. J Mater Res, 2003; 18: 1757
[26] Feng A H, Ma Z Y. Acta Mater, 2009; 57: 4248
[27] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.