Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 245-251    DOI: 10.3724/SP.J.1037.2013.00661
  论文 本期目录 | 过刊浏览 |
搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*
薛 鹏 肖伯律 马宗义
(中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016)
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS
XUE Peng, XIAO Bolü, MA Zongyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(4287 KB)   HTML
摘要: 通过强制冷却的搅拌摩擦加工(FSP)技术在Cu-Al合金中得到了超细晶和纳米结构的微观组织, 利用电子背散射衍射、透射电子显微镜等技术研究了层错能对FSP Cu-Al合金微观组织和力学性能的影响. 结果表明, FSP Cu-Al合金为均匀、等轴的再结晶组织, 随着层错能的减小, 晶粒尺寸不断降低, 而且在低层错能的FSP Cu-Al合金中, 超细晶粒内部生成了丰富的纳米孪晶片层组织, 进一步细化了微观组织. 由于微观组织的逐步细化, FSP Cu-Al合金的强度随层错能的降低逐步提高, 而均匀延伸率呈现出先增加后减小的趋势.
关键词 搅拌摩擦加工Cu-Al合金层错能纳米孪晶片层力学性能    
Abstract:Ultrafine-grained (UFG) and nanostructured (NS) materials have attracted considerable interest due to their special microstructure and mechanical properties. Severe plastic deformation is one of the optimum approaches to fabricate bulk, dense and contamination-free UFG and NS metallic materials. However, high density of dislocations and unstable microstructure were usually induced in these UFG and NS metallic materials, resulting in poor tensile plasticity and fatigue properties. In this study, bulk UFG and NS Cu-Al alloys were successfully prepared via friction stir processing (FSP) with additional forced water cooling. FSP Cu-Al alloys exhibited uniform recrystallized microstructure with equiaxed ultrafine grains, and the grain sizes reduced gradually as the stacking fault energy (SFE) decreased. Abundant nano-twin layers formed in the ultrafine grains of FSP Cu-Al alloys with low SFEs, which further refined the ultrafine grains and NS microstructure was achieved. The strength of the FSP Cu-Al alloys increased clearly with decreasing the SFEs due to the gradually refined microstructure, but the uniform elongation increased initially and then decreased in the Cu-Al alloy with the lowest SFE.
Key wordsKEY WORDS friction stir processing    Cu-Al alloy    stacking fault energy    nano-twin layer    mechanical property
    
ZTFLH:  TG172  
基金资助:* 国家自然科学基金项目51071150, 51301178和51331008资助
Corresponding author: MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn   
作者简介: 薛 鹏, 男, 1984年生, 助理研究员, 博士

引用本文:

薛鹏, 肖伯律, 马宗义. 搅拌摩擦加工超细晶及纳米结构Cu-Al合金的微观组织和力学性能研究*[J]. 金属学报, 2014, 50(2): 245-251.
XUE Peng, XIAO Bolü, MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 245-251.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00661      或      https://www.ams.org.cn/CN/Y2014/V50/I2/245

[1] Valiev R. Nat Mater, 2004; 3: 511
[2] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[3] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[4] Mughrabi H, H?ppel H W. Int J Fatigue, 2010; 32: 1413
[5] Goto M, Han S Z, Euh K, Kang J H, Kim S S. Acta Mater, 2010; 58: 6249
[6] An X H. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2012
(安祥海. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[7] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[8] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[9] Ma Z Y. Metall Mater Trans, 2008; 39A: 642
[10] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[11] Su J Q, Nelson T W, Sterling C J. Scr Mater, 2005; 52: 135
[12] Xue P, Xiao B L, Ma Z Y. Scr Mater, 2013; 68: 751
[13] Chang C I, Du X H, Huang J C. Scr Mater, 2007; 57: 209
[14] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y. Mater Sci Eng, 2013; A575: 30
[15] Xue P, Xiao B L, Ma Z Y. J Mater Sci Technol, 2013; 29: 1111
[16] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[17] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[18] Zhang P, An X H, Zhang Z J, Wu S D, Li S X, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[19] Murr L E. Interfacial Phenomena in Metals and Alloys. Massachusetts: Addison-Wesley Publishing Company, 1975: 142
[20] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[21] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[22] Meyers M A, Chawla K K. Mechanical Behavior of Materials. 2nd Ed., Cambridge: Cambridge University Press, 2009: 337
[23] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[24] Jata K V, Semiatin S L. Scr Mater, 2000; 43: 743
[25] Su J Q, Nelson T W, Sterling C J. J Mater Res, 2003; 18: 1757
[26] Feng A H, Ma Z Y. Acta Mater, 2009; 57: 4248
[27] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.