|
|
纳米晶金属材料中相变与晶粒长大的共生现象 |
刘峰( ), 黄林科, 陈豫增 |
西北工业大学凝固技术国家重点实验室 西安 710072 |
|
Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials |
Feng LIU( ), Linke HUANG, Yuzeng CHEN |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
Feng LIU,
Linke HUANG,
Yuzeng CHEN.
Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. Acta Metall Sin, 2018, 54(11): 1525-1536.
[1] | Meyers M A, Mishra A, Benson D J.Mechanical properties of nanocrystalline materials[J]. Prog. Mater. Sci., 2006, 51: 427 | [2] | Zhu Y T, Liao X Z.Nanostructured metals: Retaining ductility[J]. Nat. Mater., 2004, 3: 351 | [3] | Dao M, Lu L, Asaro R J, et al.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J]. Acta Mater., 2007, 55: 4041 | [4] | He B B, Hu B, Yen H W, et al.High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357: 1029 | [5] | Koyama M, Zhang Z, Wang M M, et al.Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355: 1055 | [6] | Gianola D S, Van Petegem S, Legros M, et al.Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films[J]. Acta Mater., 2006, 54: 2253 | [7] | Cheng S, Zhao Y H, Wang Y M, et al.Structure modulation driven by cyclic deformation in nanocrystalline NiFe[J]. Phys. Rev. Lett., 2010, 104: 255501 | [8] | Ma E, Zhu T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Mater. Today, 2017, 20: 323 | [9] | Wu X L, Zhu Y T.Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Mater. Res. Lett., 2017, 5: 527 | [10] | Peng H R, Gong M M, Chen Y Z, et al.Thermal stability of nanocrystalline materials: Thermodynamics and kinetics[J]. Int. Mater. Rev., 2016, 62: 303 | [11] | Xu Z Y.Phase transformations in nanocrystalline materials[J]. Shanghai Met., 2003, 24(1): 11(徐祖耀. 纳米材料的相变 [J]. 上海金属, 2003, 24(1): 11) | [12] | Del Bianco L, Ballesteros C, Rojo J M, et al.Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe[J]. Phys. Rev. Lett., 1998, 81: 4500 | [13] | Xiao F, Cheng W, Jin X J.Phase stability in pulse electrodeposited nanograined Co and Fe-Ni[J]. Scr. Mater., 2010, 62: 496 | [14] | Wang L M, Wang Z B, Lu K.Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Mater., 2011, 59: 3710 | [15] | Dake J M, Krill III C E. Sudden loss of thermal stability in Fe-based nanocrystalline alloys[J]. Scr. Mater., 2012, 66: 390 | [16] | Kotan H, Darling K A, Saber M, et al.An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy[J]. J. Mater. Sci., 2012, 48: 2251 | [17] | Huang L K, Lin W T, Lin B, et al.Exploring the concurrence of phase transition and grain growth in nanostructured alloy[J]. Acta Mater., 2016, 118: 306 | [18] | Huang L K, Lin W T, Wang K, et al.Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application[J]. Acta Mater., 2018, 154: 56 | [19] | Choi P, Da Silva M, Klement U, et al.Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P[J]. Acta Mater., 2005, 53: 4473 | [20] | Hibbard G D, Palumbo G, Aust K T, et al.Nanoscale combined reactions: non-equilibrium α-Co formation in nanocrystalline ε-Co by abnormal grain growth[J]. Philos. Mag., 2006, 86: 125 | [21] | Li J Y, Ni C, Liu J Y, et al.Extraordinary stability of nano-twinned structure formed during phase transformation coupled with grain growth in electrodeposited Co-Ni alloys[J]. Mater. Chem. Phys., 2014, 148: 1202 | [22] | Shaw L, Luo H, Villegas J, et al.Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying[J]. Acta Mater., 2003, 51: 2647 | [23] | Huang T Y, Kalidindi A R, Schuh C A.Grain growth and second-phase precipitation in nanocrystalline aluminum-manganese electrodeposits[J]. J. Mater. Sci., 2017, 53: 3709 | [24] | Darling K A, Rajagopalan M, Komarasamy M, et al.Extreme creep resistance in a microstructurally stable nanocrystalline alloy[J]. Nature, 2016, 537: 378 | [25] | Kapoor M, Kaub T, Darling K A, et al.An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb[J]. Acta Mater., 2017, 126: 564 | [26] | Guo J M, Haberfehlner G, Rosalie J, et al.In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys[J]. Nat. Commun., 2018, 9: 946 | [27] | Tang L L, Zhao Y H, Islamgaliev R K, et al.Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion[J]. J. Alloys Compd., 2017, 721: 577 | [28] | Kruska K, Rohatgi A, Vemuri R S, et al.Grain growth in nanocrystalline Mg-Al thin films[J]. Metall. Mater. Trans., 2017, 48A: 6118 | [29] | Hentschel T, Isheim D, Kirchheim R, et al.Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy[J]. Acta Mater., 2000, 48: 933 | [30] | F?rber B, Cadel E, Menand A, et al.Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP)[J]. Acta Mater., 2002, 48: 789 | [31] | Prasad M J N V., Chokshi A H. Microstructural stability and superplasticity in an electrodeposited nanocrystalline Ni-P alloy[J]. Acta Mater., 2011, 59: 4055 | [32] | Prasad M J N V, Chokshi A H. On the exothermic peak during annealing of electrodeposited nanocrystalline nickel[J]. Scr. Mater., 2011, 64: 544 | [33] | Marvel C J, Cantwell P R, Harmer M P.The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys[J]. Scr. Mater., 2015, 96: 45 | [34] | Ahadi A, Kalidindi A R, Sakurai J, et al.The role of W on the thermal stability of nanocrystalline NiTiWx thin films[J]. Acta Mater., 2018, 142: 181 | [35] | Clark B G, Hattar K, Marshall M T, et al.Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs[J]. JOM, 2016, 68: 1625 | [36] | Amram D, Schuh C A.Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys[J]. Acta Mater., 2018, 144: 447 | [37] | Khalajhedayati A, Rupert T J.High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy[J]. JOM, 2015, 67: 2788 | [38] | Khalajhedayati A, Pan Z L, Rupert T J.Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility[J]. Nat. Commun., 2016, 7: 10802 | [39] | Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49 | [40] | Hornbogen E.Combined reactions[J]. Metall. Trans., 1979, 10A: 947 | [41] | Yang D Z, Brown E L, Matlock D K, et al.The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel[J]. Metall. Trans., 1985, 16A: 1523 | [42] | Yang D Z, Brown E L, Matlock D K, et al.Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel[J]. Metall. Trans., 1985, 16A: 1385 | [43] | Huang J, Poole W J, Militzer M.Austenite formation during intercritical annealing[J]. Metall. Mater. Trans., 2004, 35A: 3363 | [44] | Ogawa T, Maruyama N, Sugiura N, et al.Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels[J]. ISIJ Int., 2010, 50: 469 | [45] | Azizi-Alizamini H, Militzer M, Poole W J.Austenite formation in plain low-carbon steels[J]. Metall. Mater. Trans., 2011, 42A: 1544 | [46] | Zheng C W, Raabe D.Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Mater., 2013, 61: 5504 | [47] | Chbihi A, Barbier D, Germain L, et al.Interactions between ferrite recrystallization and austenite formation in high-strength steels[J]. J. Mater. Sci., 2014, 49: 3608 | [48] | Barbier D, Germain L, Hazotte A, et al.Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels[J]. J. Mater. Sci., 2015, 50: 374 | [49] | Ollat M, Massardier V, Fabregue D, et al.Modeling of the recrystallization and austenite formation overlapping in cold-rolled dual-phase steels during intercritical treatments[J]. Metall. Mater. Trans., 2017, 48A: 4486 | [50] | Zhang J L, Raabe D, Tasan C C.Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Mater., 2017, 141: 374 | [51] | Jones M J, Humphreys F J.Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Mater., 2003, 51: 2149 | [52] | Morris J G, Liu W C.Al alloys: The influence of concurrent precipitation on recrystallization behavior, kinetics, and texture[J]. JOM, 2005, 57(11): 44 | [53] | Tangen S, Sj?lstad K, Furu T, et al.Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 2970 | [54] | Huang K, Zhang K, Marthinsen K, et al.Controlling grain structure and texture in Al-Mn from the competition between precipitation and recrystallization[J]. Acta Mater., 2017, 141: 360 | [55] | Sasaki T T, Yamamoto K, Honma T, et al.A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature[J]. Scr. Mater., 2008, 59: 1111 | [56] | Oh-ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys[J]. Acta Mater., 2009, 57: 5593 | [57] | Schinhammer M, Pecnik C M, Rechberger F, et al.Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C(-Pd) TWIP alloys[J]. Acta Mater., 2012, 60: 2746 | [58] | Azizi-Alizamini H, Militzer M, Poole W J.A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scr. Mater., 2007, 57: 1065 | [59] | Kwon O, DeArdo A J. Interactions between recrystallization and precipitation in hot-deformed microalloyed steels[J]. Acta Metall. Mater., 1991, 39: 529 | [60] | Huang K, Marthinsen K, Zhao Q L, et al.The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284 | [61] | Embury J D, Deschamps A, Brechet Y.The interaction of plasticity and diffusion controlled precipitation reactions[J]. Scr. Mater., 2003, 49: 927 | [62] | Xu Z Y.Martensitic Transformation and Martensite [M]. Beijing: Academic Press, 1980: 1(徐祖耀. 马氏体相变与马氏体 [M]. 北京: 科学出版社, 1980: 1) | [63] | Chen I W, Chiao Y H, Tsuzaki K.Statistics of martensitic nucleation[J]. Acta Metall., 1985, 33: 1847 | [64] | Waitz T, Tsuchiya K, Antretter T, et al.Phase transformations of nanocrystalline martensitic materials[J]. MRS Bull., 2011, 34: 814 | [65] | Tu J B, Jiang B H, Hsu T Y, et al.The size effect of the martensitic transformation in ZrO2-containing ceramics[J]. J. Mater. Sci., 1994, 29: 1662 | [66] | Waitz T, Antretter T, Fischer F D, et al.Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys[J]. Mater. Sci. Technol., 2008, 24: 934 | [67] | Haslam A J, Phillpot S R, Wolf D, et al.Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation[J]. Mater. Sci. Eng., 2001, A318: 293 | [68] | Koch C C, Scattergood R O, Saber M, et al.High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies[J]. J. Mater. Res., 2013, 28: 1785 | [69] | Andrievski R A.Review of thermal stability of nanomaterials[J]. J. Mater. Sci., 2013, 49: 1449 | [70] | Geslin P A, Xu Y C, Karma A.Morphological instability of grain boundaries in two-phase coherent solids[J]. Phys. Rev. Lett., 2015, 114: 105501 | [71] | Shvindlerman L S, Gottstein G.Precipitation accelerated grain growth[J]. Scr. Mater., 2004, 50: 1051 | [72] | Rupert T J.The role of complexions in metallic nano-grain stability and deformation[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 257 | [73] | Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572 | [74] | Liu F, Wang K.Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels[J]. Acta Metall. Sin., 2016, 52: 1326(刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326) | [75] | Wang K, Shang S L, Wang Y, et al.Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study[J]. Acta Mater., 2018, 147: 261 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|