Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1525-1536    DOI: 10.11900/0412.1961.2018.00318
  组织与结构 本期目录 | 过刊浏览 |
纳米晶金属材料中相变与晶粒长大的共生现象
刘峰(), 黄林科, 陈豫增
西北工业大学凝固技术国家重点实验室 西安 710072
Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials
Feng LIU(), Linke HUANG, Yuzeng CHEN
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. Acta Metall Sin, 2018, 54(11): 1525-1536.

全文: PDF(9273 KB)   HTML
摘要: 

固态相变和晶粒长大的共生现象在金属材料的热加工过程中普遍存在;认识共生现象对微观组织调控和高强高韧结构材料设计至关重要。针对纳米晶金属材料,结合近年来相变长大共生的研究进展,本文对共生起源、典型共生现象、共生机理及共生调控微观组织进行了简要综述。在此基础上,对本领域面临的关键科学问题进行了展望。

关键词 相变晶粒长大纳米晶金属材料共生    
Abstract

The concurrence of solid-state phase transition and grain growth is ubiquitous in thermal processing of metallic materials; understanding the concurrence is significant for manipulation of microstructure and design of structured materials with high strength and good ductility. This work will briefly review the recent progresses on the concurrence in nanocrystalline metallic materials, with particular attention to the physical origin, typical examples, underlying mechanisms, as well as microstructures, of the concurrence. On this basis, perspectives on scientific understanding of the occurrence in nanocrystalline materials are addressed.

Key wordsphase transition    grain growth    nanocrystalline metallic material    concurrence
收稿日期: 2018-07-09     
ZTFLH:  TG113  
基金资助:国家重点研发计划项目Nos.2017YFB0305100和2017YFB0703001,国家自然科学基金项目Nos.51431008和51790481,中央高校基本科研业务费项目No.3102017jc01002,以及西北工业大学凝固技术国家重点实验室自主研究课题项目No.117-TZ-2015
作者简介:

作者简介 刘 峰,男,1974年生,教授

图1  冷轧Fe-0.15C-1.48Mn-0.013Si钢铁素体/奥氏体相变与再结晶共生动力学和组织 [47]
图2  Al-Mn合金析出与再结晶共生组织[53]
图3  纳米晶Fe91Ni8Zr1合金相界迁移与晶界迁移共生[17]
图4  晶界-相界交互机制 [17]
图5  晶界影响相界迁移速度和方向 [17]
图6  纳米晶Fe91Ni8Zr1合金相变前单相铁素体组织三维原子重构 [18]
图7  纳米晶Fe91Ni8Zr1合金奥氏体生长行为[18]
图8  纳米晶Fe91Ni8Zr1合金双相双峰组织三维原子重构[18]
图9  纳米晶Fe91Ni8Zr1合金双相双峰组织[18]
Material Precipitate Ref.
Al93Fe3Cr2Ti2 Al6Fe, Al13Fe4, Al3Ti, Al13Cr2 [22]
Al-6.5%Mn (atomic fraction) Al6Mn [23]
Cu-10%Ta (atomic fraction) Ta [24]
Cu-Nb

Nb-oxide-based clusters,
(NbO & NbN)-based clusters,
(Nb + Fe) precipitates,
(Nb)-based precipitates
[25]

Cu75Fe25 CuO, Fe2O3 [26]
Mg-Gd-Y-Zr Mg4(Gd,Y), Mg5(Gd,Y) [27]
Mg-Al Mg17Al12 [28]
Ni-P Ni3P [29~31]
Ni-S Ni3S2 [32]
Ni-23%C (atomic fraction) Ni6W6C [33]
Ni-Ti-W W [34]
Fe-Mg MgO [35,36]
表1  纳米晶金属材料典型析出[22,23,24,25,26,27,28,29,30,31,32,33,34,35,36]
[1] Meyers M A, Mishra A, Benson D J.Mechanical properties of nanocrystalline materials[J]. Prog. Mater. Sci., 2006, 51: 427
[2] Zhu Y T, Liao X Z.Nanostructured metals: Retaining ductility[J]. Nat. Mater., 2004, 3: 351
[3] Dao M, Lu L, Asaro R J, et al.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J]. Acta Mater., 2007, 55: 4041
[4] He B B, Hu B, Yen H W, et al.High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357: 1029
[5] Koyama M, Zhang Z, Wang M M, et al.Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355: 1055
[6] Gianola D S, Van Petegem S, Legros M, et al.Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films[J]. Acta Mater., 2006, 54: 2253
[7] Cheng S, Zhao Y H, Wang Y M, et al.Structure modulation driven by cyclic deformation in nanocrystalline NiFe[J]. Phys. Rev. Lett., 2010, 104: 255501
[8] Ma E, Zhu T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Mater. Today, 2017, 20: 323
[9] Wu X L, Zhu Y T.Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Mater. Res. Lett., 2017, 5: 527
[10] Peng H R, Gong M M, Chen Y Z, et al.Thermal stability of nanocrystalline materials: Thermodynamics and kinetics[J]. Int. Mater. Rev., 2016, 62: 303
[11] Xu Z Y.Phase transformations in nanocrystalline materials[J]. Shanghai Met., 2003, 24(1): 11(徐祖耀. 纳米材料的相变 [J]. 上海金属, 2003, 24(1): 11)
[12] Del Bianco L, Ballesteros C, Rojo J M, et al.Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe[J]. Phys. Rev. Lett., 1998, 81: 4500
[13] Xiao F, Cheng W, Jin X J.Phase stability in pulse electrodeposited nanograined Co and Fe-Ni[J]. Scr. Mater., 2010, 62: 496
[14] Wang L M, Wang Z B, Lu K.Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Mater., 2011, 59: 3710
[15] Dake J M, Krill III C E. Sudden loss of thermal stability in Fe-based nanocrystalline alloys[J]. Scr. Mater., 2012, 66: 390
[16] Kotan H, Darling K A, Saber M, et al.An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy[J]. J. Mater. Sci., 2012, 48: 2251
[17] Huang L K, Lin W T, Lin B, et al.Exploring the concurrence of phase transition and grain growth in nanostructured alloy[J]. Acta Mater., 2016, 118: 306
[18] Huang L K, Lin W T, Wang K, et al.Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application[J]. Acta Mater., 2018, 154: 56
[19] Choi P, Da Silva M, Klement U, et al.Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P[J]. Acta Mater., 2005, 53: 4473
[20] Hibbard G D, Palumbo G, Aust K T, et al.Nanoscale combined reactions: non-equilibrium α-Co formation in nanocrystalline ε-Co by abnormal grain growth[J]. Philos. Mag., 2006, 86: 125
[21] Li J Y, Ni C, Liu J Y, et al.Extraordinary stability of nano-twinned structure formed during phase transformation coupled with grain growth in electrodeposited Co-Ni alloys[J]. Mater. Chem. Phys., 2014, 148: 1202
[22] Shaw L, Luo H, Villegas J, et al.Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying[J]. Acta Mater., 2003, 51: 2647
[23] Huang T Y, Kalidindi A R, Schuh C A.Grain growth and second-phase precipitation in nanocrystalline aluminum-manganese electrodeposits[J]. J. Mater. Sci., 2017, 53: 3709
[24] Darling K A, Rajagopalan M, Komarasamy M, et al.Extreme creep resistance in a microstructurally stable nanocrystalline alloy[J]. Nature, 2016, 537: 378
[25] Kapoor M, Kaub T, Darling K A, et al.An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb[J]. Acta Mater., 2017, 126: 564
[26] Guo J M, Haberfehlner G, Rosalie J, et al.In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys[J]. Nat. Commun., 2018, 9: 946
[27] Tang L L, Zhao Y H, Islamgaliev R K, et al.Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion[J]. J. Alloys Compd., 2017, 721: 577
[28] Kruska K, Rohatgi A, Vemuri R S, et al.Grain growth in nanocrystalline Mg-Al thin films[J]. Metall. Mater. Trans., 2017, 48A: 6118
[29] Hentschel T, Isheim D, Kirchheim R, et al.Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy[J]. Acta Mater., 2000, 48: 933
[30] F?rber B, Cadel E, Menand A, et al.Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP)[J]. Acta Mater., 2002, 48: 789
[31] Prasad M J N V., Chokshi A H. Microstructural stability and superplasticity in an electrodeposited nanocrystalline Ni-P alloy[J]. Acta Mater., 2011, 59: 4055
[32] Prasad M J N V, Chokshi A H. On the exothermic peak during annealing of electrodeposited nanocrystalline nickel[J]. Scr. Mater., 2011, 64: 544
[33] Marvel C J, Cantwell P R, Harmer M P.The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys[J]. Scr. Mater., 2015, 96: 45
[34] Ahadi A, Kalidindi A R, Sakurai J, et al.The role of W on the thermal stability of nanocrystalline NiTiWx thin films[J]. Acta Mater., 2018, 142: 181
[35] Clark B G, Hattar K, Marshall M T, et al.Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs[J]. JOM, 2016, 68: 1625
[36] Amram D, Schuh C A.Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys[J]. Acta Mater., 2018, 144: 447
[37] Khalajhedayati A, Rupert T J.High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy[J]. JOM, 2015, 67: 2788
[38] Khalajhedayati A, Pan Z L, Rupert T J.Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility[J]. Nat. Commun., 2016, 7: 10802
[39] Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49
[40] Hornbogen E.Combined reactions[J]. Metall. Trans., 1979, 10A: 947
[41] Yang D Z, Brown E L, Matlock D K, et al.The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel[J]. Metall. Trans., 1985, 16A: 1523
[42] Yang D Z, Brown E L, Matlock D K, et al.Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel[J]. Metall. Trans., 1985, 16A: 1385
[43] Huang J, Poole W J, Militzer M.Austenite formation during intercritical annealing[J]. Metall. Mater. Trans., 2004, 35A: 3363
[44] Ogawa T, Maruyama N, Sugiura N, et al.Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels[J]. ISIJ Int., 2010, 50: 469
[45] Azizi-Alizamini H, Militzer M, Poole W J.Austenite formation in plain low-carbon steels[J]. Metall. Mater. Trans., 2011, 42A: 1544
[46] Zheng C W, Raabe D.Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Mater., 2013, 61: 5504
[47] Chbihi A, Barbier D, Germain L, et al.Interactions between ferrite recrystallization and austenite formation in high-strength steels[J]. J. Mater. Sci., 2014, 49: 3608
[48] Barbier D, Germain L, Hazotte A, et al.Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels[J]. J. Mater. Sci., 2015, 50: 374
[49] Ollat M, Massardier V, Fabregue D, et al.Modeling of the recrystallization and austenite formation overlapping in cold-rolled dual-phase steels during intercritical treatments[J]. Metall. Mater. Trans., 2017, 48A: 4486
[50] Zhang J L, Raabe D, Tasan C C.Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Mater., 2017, 141: 374
[51] Jones M J, Humphreys F J.Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Mater., 2003, 51: 2149
[52] Morris J G, Liu W C.Al alloys: The influence of concurrent precipitation on recrystallization behavior, kinetics, and texture[J]. JOM, 2005, 57(11): 44
[53] Tangen S, Sj?lstad K, Furu T, et al.Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 2970
[54] Huang K, Zhang K, Marthinsen K, et al.Controlling grain structure and texture in Al-Mn from the competition between precipitation and recrystallization[J]. Acta Mater., 2017, 141: 360
[55] Sasaki T T, Yamamoto K, Honma T, et al.A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature[J]. Scr. Mater., 2008, 59: 1111
[56] Oh-ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys[J]. Acta Mater., 2009, 57: 5593
[57] Schinhammer M, Pecnik C M, Rechberger F, et al.Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C(-Pd) TWIP alloys[J]. Acta Mater., 2012, 60: 2746
[58] Azizi-Alizamini H, Militzer M, Poole W J.A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scr. Mater., 2007, 57: 1065
[59] Kwon O, DeArdo A J. Interactions between recrystallization and precipitation in hot-deformed microalloyed steels[J]. Acta Metall. Mater., 1991, 39: 529
[60] Huang K, Marthinsen K, Zhao Q L, et al.The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284
[61] Embury J D, Deschamps A, Brechet Y.The interaction of plasticity and diffusion controlled precipitation reactions[J]. Scr. Mater., 2003, 49: 927
[62] Xu Z Y.Martensitic Transformation and Martensite [M]. Beijing: Academic Press, 1980: 1(徐祖耀. 马氏体相变与马氏体 [M]. 北京: 科学出版社, 1980: 1)
[63] Chen I W, Chiao Y H, Tsuzaki K.Statistics of martensitic nucleation[J]. Acta Metall., 1985, 33: 1847
[64] Waitz T, Tsuchiya K, Antretter T, et al.Phase transformations of nanocrystalline martensitic materials[J]. MRS Bull., 2011, 34: 814
[65] Tu J B, Jiang B H, Hsu T Y, et al.The size effect of the martensitic transformation in ZrO2-containing ceramics[J]. J. Mater. Sci., 1994, 29: 1662
[66] Waitz T, Antretter T, Fischer F D, et al.Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys[J]. Mater. Sci. Technol., 2008, 24: 934
[67] Haslam A J, Phillpot S R, Wolf D, et al.Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation[J]. Mater. Sci. Eng., 2001, A318: 293
[68] Koch C C, Scattergood R O, Saber M, et al.High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies[J]. J. Mater. Res., 2013, 28: 1785
[69] Andrievski R A.Review of thermal stability of nanomaterials[J]. J. Mater. Sci., 2013, 49: 1449
[70] Geslin P A, Xu Y C, Karma A.Morphological instability of grain boundaries in two-phase coherent solids[J]. Phys. Rev. Lett., 2015, 114: 105501
[71] Shvindlerman L S, Gottstein G.Precipitation accelerated grain growth[J]. Scr. Mater., 2004, 50: 1051
[72] Rupert T J.The role of complexions in metallic nano-grain stability and deformation[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 257
[73] Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572
[74] Liu F, Wang K.Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels[J]. Acta Metall. Sin., 2016, 52: 1326(刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326)
[75] Wang K, Shang S L, Wang Y, et al.Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study[J]. Acta Mater., 2018, 147: 261
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[12] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[14] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.