Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 376-388    DOI: 10.11900/0412.1961.2018.00219
  本期目录 | 过刊浏览 |
焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响
吉华1,2,邓运来3(),徐红勇2,郭伟强2,邓建峰2,范世通3
1. 中南大学轻合金研究院 长沙 410083
2. 航天工程装备(苏州)有限公司 苏州 215100
3. 中南大学材料科学与工程学院 长沙 410083
The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z
Hua JI1,2,Yunlai DENG3(),Hongyong XU2,Weiqiang GUO2,Jianfeng DENG2,Shitong FAN3
1. Light Alloys Research Institute, Central South University, Changsha 410083, China
2. Aerospace Engineering Equipment Suzhou Co., Ltd., Suzhou 215100, China
3. School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
Hua JI, Yunlai DENG, Hongyong XU, Weiqiang GUO, Jianfeng DENG, Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. Acta Metall Sin, 2019, 55(3): 376-388.

全文: PDF(27746 KB)   HTML
摘要: 

以AlSi5焊丝作为填充材料,采用冷金属过渡(CMT)焊接技术对5182-O/HC260YD+Z异种材料进行搭接熔钎焊,借助OM、XRD、SEM、EDS分析了不同工艺参数下搭接接头的宏观形貌及微观组织特征,并对接头显微硬度及剪切强度进行了测试。结果表明,焊接线能量通过影响钎焊界面IMCs层厚度进而影响接头性能及断裂类型;当送丝速率为5 m/min、焊接速率为9 mm/s时,IMCs层厚度约为6 μm,接头剪切强度可达160 MPa;接头断口形式分为“熔焊界面型”及“钎焊界面型”,近起弧处均为“熔焊界面型”断口,随着焊接线能量增加,钎焊界面IMCs层厚度增加,近收弧处断口类型逐渐由“熔焊界面型”向“钎焊界面型”演变;当焊缝单位长度上焊机输出功为150~210 J/mm时,IMCs层厚度小于9 μm,接头剪切强度较好,且较易获得“熔焊界面型”断口。

关键词 铝合金/钢搭接接头冷金属过渡焊金属间化合物焊接线能量剪切强度    
Abstract

In recent years, the welding of dissimilar metals such as steels and aluminum alloys has attracted much more attentions due to weight reduction, especially in automobile and railway vehicle manufacturing industry. However, many challenges and problems need to be addressed in order to obtain high quality welding joints between steels and aluminum alloys resulting from their differences of thermal-physical properties. The formation of intermetallic compounds (IMCs) in the course of welding will lower the mechanical properties of the joints. Up to now, a few techniques have been tried to weld aluminum alloys and steels, including solid welding and fusion welding. In this work, dissimilar metals of 5182-O and HC260YD+Z were welded by cold metal transfer (CMT) arc-brazing using AlSi5 as filler metal. The macro and micro morphologies of the overlap joint were investigated using OM, XRD, SEM and EDS analyses. The hardness and shear strength of the joints were tested. Results show that welding line energy can affect the thickness of IMCs existing on the brazing interface and thus depress the combination properties because of the different fracture modes. When the welding speed and wire feed speed are 9 mm/s and 5 m/min respectively, the IMCs thickness is about 6 μm, and the shear strength of the jonts can reach to 160 MPa. Two typical fracture modes of fusion interface fracture and brazing interface fracture were observed. The fracture mode of the position near arc striking is "fusion interface". With the increasing of welding energy, the thickness of IMCs is increased and the fracture mode near arc extinguishing is changed from "fusion interface" to "brazing interface". When the output power of CMT equipment is 150~210 J/mm at welding beam length, the IMCs thickness is less than 9 μm, which benefits the shear strength performance of the joints, and the fracture mode of "fusion interface" can be easily obtained.

Key wordsAl alloy/steel lap joint    CMT    intermetallic compound    weld line energy    shear strength
收稿日期: 2018-05-22     
ZTFLH:  T454  
基金资助:国家重点研发计划项目(2016YFB0300901);国家自然科学基金项目(51375503);广西八桂学者项目(2013A017)
作者简介: 吉 华,男,1986年生,博士生
SpecimenWire feed speedWelding speedWelding voltageWelding current
m·min-1m·min-1VA
S14716.364.0
S24.5716.972.0
S35716.983.0
S45.5717.393.0
S56718.3102.0
S65516.983.0
S75616.983.0
S85816.983.0
S95916.983.0
表1  5182-O铝合金与HC260YD+Z镀锌钢板搭接实验试样分组
图1  焊接示意图
图2  铝合金/钢冷金属过渡(CMT)搭接接头典型分区(S3)
图3  铝合金/钢CMT搭接接头不同区域微区XRD谱(S3)
图4  送丝速率、焊接速率对钎焊界面微观组织的影响及EDS分析结果
PointAtomic fraction / %Possible phase
AlFeMgSiOthers (C, O et al)
A24.0852.78-0.9922.15γ-Fe+FeAl
B37.4522.10-1.7138.74FeAl2
C53.9915.520.171.8828.44FeAl3
E34.9431.98-2.1430.94FeAl
表2  图4各点EDS分析结果
图5  钎焊界面形成过程示意图
图6  送丝速率、焊接速率对熔焊界面微观形貌的影响
图7  送丝速率、焊接速率对焊缝区微观组织的影响
图8  图7面扫描分析结果
PointAtomic fraction / %Possible phase
AlFeMgSiOthers (C, O et al)
A96.150.350.201.242.06α-Al
B73.973.420.2017.405.01(α-Al+Si)
C62.7218.500.182.5316.07FeAl3
D62.6619.650.112.8414.74FeAl3
表3  图7中各点微区EDS分析结果
图9  焊缝区冶金过程示意图
图10  富Zn区微观组织及面扫描分析结果
PointAtomic fraction / %Possible phase
AlFeZnSiOthers (C, O et al)
A71.160.1312.418.397.91α-Al
B81.950.1814.790.582.50(α-Al+Zn)
表4  图10各点EDS分析结果
图11  S3铝合金侧、钢侧接头显微硬度及热影响区组织特征
图12  不同试样的焊接线能量因子及剪切强度
图13  典型试样断口形貌
SpecimenNear arc strikingNear arc extinguishing
S1AA
S2AA
S3AA
S4AB
S5AB
S6AB
S7AB
S8AA
S9AA
表5  不同试样断裂形式
[1] Zhou D W, Peng Y, Xu S H, et al. Microstructure and mechanical property of steel/Al alloy laser welding with Sn powder addition [J]. Acta Metall. Sin., 2013, 49: 959
[1] 周惦武, 彭 艳, 徐少华等. 添加Sn粉激光焊接钢/铝合金异种金属的显微组织与性能 [J]. 金属学报, 2013, 49: 959
[2] Pan F, Cui L, Qian W, et al. Microstructures and mechanical properties of dual-beam laser keyhole welded joints of aluminum alloys to stainless steels [J]. Acta Metall. Sin., 2016, 52: 1388
[2] 潘 峰, 崔 丽, 钱 伟等. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能 [J]. 金属学报, 2016, 52: 1388
[3] Deschamps A, Ringeval S, Texier G, et al. Quantitative characterization of the microstructure of an electron-beam welded medium strength Al-Zn-Mg alloy [J]. Mater. Sci. Eng., 2009, A517: 361
[4] Venkateswaran P, Reynolds A P. Factors affecting the properties of friction stir welds between aluminum and magnesium alloys [J]. Mater. Sci. Eng., 2012, A545: 26
[5] Haddadi F, Strong D, Prangnell P B. Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding [J]. JOM, 2012, 64: 407
[6] Torkamany M J, Tahamtan S, Sabbaghzadeh J. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd: YAG pulsed laser [J]. Mater. Des., 2010, 31: 458
[7] Song J L, Lin S B, Yang C L, et al. Effects of Si additions on intermetallic compound layer of aluminum-steel TIG welding-brazing joint [J]. J. Alloys Compd., 2009, 488: 217
[8] Lin J, Ma N S, Lei Y P, et al. Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel [J]. J. Mater. Process. Technol., 2013, 213: 1303
[9] Mathieu A, Shabadi R, Deschamps A, et al. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire) [J]. Opt. Laser Technol., 2007, 39: 652
[10] Carbucicchio M, Palombarini G, Ciprian R, et al. Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes [J]. Hyperfine Interact., 2009, 191: 143
[11] Zhang W H, Qiu X M, Sun D Q, et al. Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanised high strength steel and aluminium alloy [J]. Sci. Technol. Weld. Join., 2011, 16: 153
[12] Bach F W, Beniyash A, Lau K, et al. Joining of steel-aluminium hybrid structures with electron beam on atmosphere [J]. Adv. Mater. Res., 2005, 6-8: 143
[13] Sierra G, Peyre P, Deschaux-Beaume F, et al. Steel to aluminium key-hole laser welding [J]. Mater. Sci. Eng., 2007, A447: 197
[14] Laukant H, Wallmann C, Korte M, et al. Flux-less joining technique of aluminium with zinc-coated steel sheets by a dual-spot-laser beam [J]. Adv. Mater. Res., 2005, 6-8: 163
[15] Kouadri-David A, Team P S M. Study of metallurgic and mechanical properties of laser welded heterogeneous joints between DP600 galvanised steel and aluminium 6082 [J]. Mater. Des., 2014, 54: 184
[16] Yang J, Li Y L, Zhang H. Microstructure and mechanical properties of pulsed laser welded Al/steel dissimilar joint [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 994
[17] Mathieu A, Matte? S, Deschamps A, et al. Temperature control in laser brazing of a steel/aluminium assembly using thermographic measurements [J]. NDT E Int., 2006, 39: 272
[18] Lee K J, Kumai S, Ishikawa N, et al. Interfacial microstructure of A6111/steel lap joint fabricated by defocused laser beam welding [J]. Mater. Sci. Forum, 2006, 519-521: 1119
[19] Dong H G, Yang L Q, Dong C, et al. Arc joining of aluminum alloy to stainless steel with flux-cored Zn-based filler metal [J]. Mater. Sci. Eng., 2010, A527: 7151
[20] Liu Y B, Sun Q J, Sang H B, et al. Microstructure and mechanical properties of cold metal transfer welded aluminium/nickel lap joints [J]. Sci. Technol. Weld. Join., 2015, 20: 307
[21] Shi C L, He P, Feng J C, et al. Interface microstructure and mechanical property of CMT welding-brazed joint between aluminum and galvanized steel sheet [J]. Trans. China Weld. Inst., 2006, 27(12): 61
[21] 石常亮, 何 鹏, 冯吉才等. 铝/镀锌钢板CMT熔钎焊界面区组织与接头性能 [J]. 焊接学报, 2006, 27(12): 61)
[22] Zhang H T, Feng J C, He P, et al. The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel [J]. Mater. Sci. Eng., 2009, A499: 111
[23] Zhang H T, Feng J C, He P. Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium [J]. Metar. Sci. Technol., 2008, 24: 1346
[24] Cui D Z, Lu S, Cui Q Q, et al. Effect of heat input on microstructure and mechanical properties of CMT welding-brazing joint between 5052 aluminum alloy and galvanized Q235 steel [J]. Trans. China Weld. Inst., 2014, 35(9): 82
[24] 崔佃忠, 芦 笙, 崔晴晴等. 焊接热输入对铝/镀锌钢CMT熔-钎焊接头组织与性能的影响 [J]. 焊接学报, 2014, 35(9): 82)
[25] Niu S, Chen S, Dong H G, et al. Microstructure and properties of lap joint between aluminum alloy and galvanized steel by CMT [J]. J Mater. Eng. Perform., 2016, 25: 1839
[26] Zhang H T. Study on the mechanism of joining aluminium to zinc-coated steel by CMT welding-brazing process [D]. Harbin: Harbin Institute of Technology, 2008
[26] 张洪涛. 铝/镀锌钢板CMT熔—钎焊机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008
[27] Madhavan S, Kamaraj M, Vijayaraghavan L. Microstructure and mechanical properties of cold metal transfer welded aluminium/dual phase steel [J]. Sci. Technol. Weld. Join., 2016, 21: 194
[28] Bruckner J. Cold metal transfer has a future joining steel to aluminum [J]. Weld. J., 2005, 84: 38
[29] Adamiak M, Wygl?dacz B, Czupryński A, et al. A study of susceptibility and evaluation of causes of cracks formation in braze-weld filler metal in lap joints aluminum-carbon steel made with use of CMT method and high power diode laser [J]. Arch. Metall. Mater., 2017, 62: 2113
[30] Cao R, Chang J H, Huang Q, et al. Behaviors and effects of Zn coating on welding-brazing process of Al-steel and Mg-steel dissimilar metals [J]. J. Manuf. Process., 2018, 31: 674
[31] Dong H G, Hu W J, Duan Y P, et al. Dissimilar metal joining of aluminum alloy to galvanized steel with Al-Si, Al-Cu, Al-Si-Cu and Zn-Al filler wires [J]. J. Mater. Process. Technol., 2012, 212: 458
[32] Dong H G, Liao C Q, Yang L Q, et al. Effects of post-weld heat treatment on dissimilar metal joint between aluminum alloy and stainless steel [J]. Mater. Sci. Eng., 2012, A550: 423
[33] Dong H G, Yang L Q, Dong C, et al. Improving arc joining of Al to steel and Al to stainless steel [J]. Mater. Sci. Eng., 2012, A534: 424
[34] Xu H Y, Wang W Q, Huang S M, et al. Microstructures and properties of Ni-based wear resistant layers reinforced by TiC generated from in situ plasma spray welding [J]. Acta Metall. Sin., 2016, 52: 1423
[34] 徐红勇, 王文权, 黄诗铭等. 等离子喷焊原位生成TiC硬质增强镍基耐磨层组织与性能 [J]. 金属学报, 2016, 52: 1423
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[4] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[5] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[6] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[8] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.