Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1275-1285    DOI: 10.11900/0412.1961.2020.00027
  本期目录 | 过刊浏览 |
SiCf/Ti65复合材料界面反应与基体相变机理
王超1,2, 张旭1(), 王玉敏1(), 杨青1, 杨丽娜1, 张国兴1, 吴颖1, 孔旭1, 杨锐1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites
WANG Chao1,2, ZHANG Xu1(), WANG Yumin1(), YANG Qing1, YANG Lina1, ZHANG Guoxing1, WU Ying1, KONG Xu1, YANG Rui1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
Chao WANG, Xu ZHANG, Yumin WANG, Qing YANG, Lina YANG, Guoxing ZHANG, Ying WU, Xu KONG, Rui YANG. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. Acta Metall Sin, 2020, 56(9): 1275-1285.

全文: PDF(3055 KB)   HTML
摘要: 

采用磁控溅射先驱丝法并结合热等静压技术制备了SiCf/Ti65复合材料,对其在650、750、800和900 ℃进行了长时间热暴露实验。结果表明,热等静压和热暴露过程中,SiCf/Ti65复合材料内部各元素同时参与界面互扩散和基体相变扩散。热等静压后,SiCf/Ti65复合材料界面反应层产物主要为TiC,基体中相变产物为等轴的(Zr, Nb)5Si4。热暴露过程中,界面反应逐渐生成了Ti5Si3和(Zr, Nb)5Si4,基体相变则有了Ti3(Al, Sn)C和TiC生成。SiCf /Ti65复合材料反应层长大激活能为93 kJ/mol,该材料界面可以在650 ℃及以下温度长时间保持稳定。

关键词 钛基复合材料SiC纤维界面反应元素扩散基体相变    
Abstract

Continuous silicon carbide (SiC) ?ber-reinforced titanium metal-matrix composites (TMCs) are potential candidates for high temperature application in jet engines because of their high specific strength and stiffness. However, severe interfacial reactions caused by high temperature manufacture and service have a detrimental effect on the mechanical properties of composites. Furthermore, the phase transition occurred in matrix at elevated temperature is unfavorable to the properties. In this work, the interfacial reaction, matrix phase transformation and thermal stability of SiCf /Ti65 composites were investigated. The composites were prepared by the combination of magnetron sputtering and hot isostatic pressing (HIP) method. Matrix-coated precursor wires prepared by sputtering were aligned, degased and encapsulated, then consolidated by HIP. And the densified composites were subjected to long-term thermal exposure at 650, 750, 800 and 900 ℃, respectively. Reaction products and element diffusion of SiCf /Ti65 composites in different conditions were studied. The results show that the elements diffuse and participate in both interfacial reaction and matrix phase transition during HIP and thermal exposure process. In the as-processed SiCf /Ti65 composites, TiC is the main product of interfacial reaction layer, and (Zr, Nb)5Si4 is the product of matrix phase transition. With the continuous consumption of C-coating layer in the process of thermal exposure, Ti5Si3 and (Zr, Nb)5Si4 form in the interfacial reaction layer, while Ti3(Al, Sn)C and TiC precipitate in the matrix. The results of thermal stability study indicate a parabolic correlation between interfacial reaction layer thickness and exposure time, and the activation energy of reaction layer growth estimated by Arrhenius equation is 93 kJ/mol. The interface of SiCf /Ti65 composites is stable below 650 ℃.

Key wordstitanium matrix composites    SiC fiber    interfacial reaction    element diffusion    matrix phase transition
收稿日期: 2020-01-17     
ZTFLH:  TG146.23  
作者简介: 王 超,男,1994年生,硕士生
图1  SiCf/Ti65复合材料成型态横截面形貌的SEM像
图2  SiCf /Ti65复合材料成型态横截面局部形貌的BS-SEM像和界面区域形貌的SEM像
图3  SiCf /Ti65复合材料成型态界面区域的SEM像和EDS元素面分布图Color online
图4  SiCf /Ti65复合材料成型态的XRD谱
图5  SiCf /Ti65复合材料成型态界面反应区域的TEM像及界面反应产物的SAED花样
图6  SiCf /Ti65复合材料在900 ℃不同热暴露时间下界面区域的SEM像(a) 900 ℃, 5 h;(b) 900 ℃, 50 h;(c) 900 ℃, 100 h;(d) 900 ℃, 200 h
图7  SiCf /Ti65复合材料在900 ℃、200 h热暴露后界面区域的SEM像和EDS元素面分布图Color online
图8  SiCf /Ti65复合材料在不同热暴露条件下的XRD谱
图9  SiCf /Ti65复合材料900 ℃、200 h热暴露后界面反应区域的TEM像及界面反应产物的SAED花样
图10  SiCf /Ti65 复合材料在不同状态下的物相分布和元素扩散路径示意图Color online(a) precursor wire(b) as-processed stage(c) early stage of thermal exposure(d) late stage of thermal exposure
图11  SiCf /Ti65 复合材料在不同热暴露状态下的界面反应层形貌的SEM像(a) 650 ℃, 50 h;(b) 650 ℃, 100 h;(c) 650 ℃, 150 h;(d) 650 ℃, 200 h(e) 750 ℃, 50 h;(f) 750 ℃, 100 h;(g) 750 ℃, 150 h;(h) 750 ℃, 200 h(i) 800 ℃, 50 h;(j) 800 ℃, 100 h;(k) 800 ℃, 150 h;(l) 800 ℃, 200 h(m) 900 ℃, 50 h;(n) 900 ℃, 100 h;(o) 900 ℃, 150 h;(p) 900 ℃, 200 h
Temperature / ℃5 h15 h30 h50 h100 h150 h200 h
650---0.800.810.810.81
750---0.910.981.031.08
800---1.211.381.511.58
9000.971.121.311.512.503.373.99
表1  SiCf/Ti65 复合材料在不同热暴露状态下的界面反应层厚度 (μm)
图12  SiCf /Ti65复合材料界面反应动力学曲线
图13  SiCf /Ti65界面反应层长大的Arrhenius关系图
Materialk0 / (m·s-1/2)Q / (kJ·mol-1)
SiCf /TC17[28]4.64×10-3138
SiCf /Ti60[31]2.27×10-4118
SiCf /Ti652.37×10-593
表2  不同材料的频率因子(k0)和生长激活能(Q)
[1] Fan Z, Guo Z X, Cantor B. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs [J]. Composites, 1997, 28A: 131
[2] Zhao G M, Yang Y Q, Zhang W, et al. Microstructure and grain growth of the matrix of SiCf/Ti-6Al-4V composites prepared by the consolidation of matrix-coated fibers in the β phase field [J]. Composites, 2013, 52B: 155
[3] Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites [J]. Acta Metall. Sin., 2016, 52: 1153
[3] (王玉敏, 张国兴, 张 旭等. 连续SiC纤维增强钛基复合材料研究进展 [J]. 金属学报, 2016, 52: 1153)
[4] Baik K H, Grant P S. Chemical interaction between sigma 1140+ SiC fibre and Ti-6Al-4V [J]. Scr. Mater., 2001, 44: 607
[5] Yang Y Q, Ma Z J, Lü X H, et al. Studies on interface of SiCf /Ti-6Al-4V composites [J]. Rare Met. Mater. Eng., 2006, 35: 1516
[6] Boehlert C J, Majumdar B S, Krishnamurthy S, et al. Role of matrix microstructure on room-temperature tensile properties and fiber-strength utilization of an orthorhombic Ti-alloy-based composite [J]. Metall. Mater. Trans., 1997, 28A: 309
[7] Gundel D B, Miracle D B. The influence of interface structure and composition on the response of single-fiber SiC/Ti-6Al-4V composites to transverse tension [J]. Appl. Compos. Mater., 1998, 5: 95
[8] Xiao P. Study on interfacial property and residual stress of SiC fiber reinforced Ti-22Al-26Nb composites [D]. Graduate School of Chinese Academy of Science, 2010
[8] (肖 鹏. SiC纤维增强Ti-22Al-26Nb基复合材料的界面性能及残余应力研究 [D]. 中国科学院研究生院, 2010)
[9] Zhang G X, Kang Q, Shi N L, et al. Kinetics and mechanism of interfacial reaction in a SiCf/Ti composite [J]. J. Mater. Sci. Technol., 2003, 19: 407
[10] Lü X H, Yang Y Q, Huang B, et al. Reaction diffusion in continuous SiC fiber reinforced Ti matrix composite [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 27
[11] Sandhu S, Tsakiropoulos P, Wood M J, et al. Interfacial studies in titanium aluminide/SiCf composites [J]. Key Eng. Mater., 1997, 127-131: 671
[12] Zhang S M, Wang M J, Wen M, et al. Interfacial reactions and matrix microstructure evolution in SiCf/Ti composites dominated by primary structure of Ti matrix [J]. Ceram. Int., 2019, 45: 17767
[13] Yang Y Q, Lu X H, Luo X, et al. Kinetics of interfacial reaction in SiCf/Ti6Al4V composites [J]. Mater. Sci. Forum, 2007, 546-549: 1627
[14] Naka M, Feng J C, Schuster J C. Phase reaction and diffusion path of the SiC/Ti system [J]. Metall. Mater. Trans., 1997, 28A: 1385
[15] Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
[16] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aerona. Mater., 2014, 34(4): 1
[16] (王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1)
[17] Subramanian P R, Krishnamurthy S, Keller S T, et al. Processing of continuously reinforced Ti-alloy metal matrix composites (MMC) by magnetron sputtering [J]. Mater. Sci. Eng., 1998, A244: 1
[18] Martineau P, Lahaye M, Pailler R, et al. SiC filament/titanium matrix composites regarded as model composites: Part 1 Filament microanalysis and strength characterization [J]. J. Mater. Sci., 1984, 19: 2731
[19] Wu M, Zhang K, Huang H, et al. Interfacial reactions in SiCf/C/Ti17 composites dominated by texture of carbon coatings [J]. Carbon, 2017, 124: 238
[20] Ning X J, Pirouz P, Lagerlof K P D, et al. The structure of carbon in chemically vapor deposited SiC monofilaments [J]. J. Mater. Res., 1990, 5: 2865
[21] Das G. A study of the reaction zone in an SiC fiber-reinforced titanium alloy composite [J]. Metall. Mater. Trans., 1990, 21A: 1571
[22] Martineau P, Pailler R, Lahaye M, et al. SiC filament/titanium matrix composites regarded as model composites: Part 2 Fibre/matrix chemical interactions at high temperatures [J]. J. Mater. Sci., 1984, 19: 2749
doi: 10.1007/BF00550832
[23] Lü X H, Yang Y Q, Ma Z J, et al. Kinetics and mechanism of interfacial reaction in SCS-6 SiC continuous fiber-reinforced Ti-Al intermetallic matrix composites [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 77
[24] Lü X H, Yang Y Q, Ma Z J, et al. The formation sequence of interfacial reaction products and diffusion path in SiC/Ti6Al4V composite [J]. Rare Met. Mater. Eng., 2007, 36: 1162
[25] Rudy E. Part V, materials laboratory [R]. Tech. Rep. AFML-TR-65-2, Wright-Patterson Air Force Base, OH, 1969
[26] Morozumi S, Endo M, Kikuchi M, et al. Bonding mechanism between silicon carbide and thin foils of reactive metals [J]. J. Mater. Sci., 1985, 20: 3976
[27] Hall I W, Ni C Y. Thermal stability of an SCS-6/Ti-22Al-23Nb composite [J]. Mater. Sci. Eng., 1995, A192-193: 987
[28] Zhang X, Wang Y M, Lei J F, et al. The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite [J]. Acta Metall. Sin., 2012, 48: 1306
[28] (张 旭, 王玉敏, 雷家峰等. SiCf/TC17复合材料界面热稳定性及元素扩散机理 [J]. 金属学报, 2012, 48: 1306)
[29] Yang J M, Jeng S M. Interfacial reactions in titanium-matrix composites [J]. JOM, 1989, 41(11): 56
[30] Lü X H. Study on the interfacial diffusion behaviors of SiC continuous fiber reinforced Ti-matrix composites [D]. Xi'an: Northwestern Polytechnical University, 2006
[30] (吕祥鸿. SiC连续纤维增强Ti基复合材料的界面扩散行为研究 [D]. 西安: 西北工业大学, 2006)
[31] Kong X, Wang Y M, Zhang X, et al. Thermal stability of SiCf /Ti60 composites [J]. Rare Met. Mater. Eng., 2017, 46(S1): 71
[31] (孔 旭, 王玉敏, 张 旭等. SiCf/Ti60复合材料的热稳定性 [J]. 稀有金属材料与工程, 2017, 46(S1): 71)
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[4] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[5] 武玉鹏, 张博, 李经明, 张双楠, 吴颖, 王玉敏, 蔡桂喜. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报, 2020, 56(8): 1175-1184.
[6] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[8] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[9] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[10] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[11] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[12] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[13] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
[14] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[15] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.