Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1318-1324    DOI: 10.3724/SP.J.1037.2013.00413
  论文 本期目录 | 过刊浏览 |
快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能
盛立远1),章炜2),赖琛1),郭建亭2),奚廷斐1),叶恒强2)
1) 北京大学深圳研究院人体组织再生与修复深圳重点实验室, 深圳 518057
2) 中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION
SHENG Liyuan1), ZHANG Wei2), LAI Chen1), GUO Jianting2),XI Tingfei1), YE Hengqiang2)
1) Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting, XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. Acta Metall Sin, 2013, 49(11): 1318-1324.

全文: PDF(3924 KB)  
摘要: 

利用水冷Cu模喷铸快速凝固技术制备Laves相(Cr2Nb)增强NiAl基复合材料,并对比研究了普通铸造和快速凝固工艺制备的NiAl/Laves相材料的微观组织和力学性能.结果显示, 普通铸造合金中的Laves相相对粗大, 呈不连续状分布于NiAl相周围,NiAl相中析出了棒状的Laves相, 由于Ni和Al元素在Laves相中的存在,合金中Laves相在室温下拥有C14的晶体结构.快速凝固工艺有效地细化了NiAl和Laves相,并使NiAl相界的Laves相形成NiAl/Laves共晶层片, 呈胞状结构包覆NiAl相. 但是,快速凝固工艺仍然无法完全抑制细长针状Laves相在NiAl中的析出, 但抑制了α-Cr相的析出.压缩性能显示, 相对普通铸造工艺, 快速凝固工艺制备的胞状Laves相增强NiAl基复合材料具有更佳的室温和高温性能,其性能的改善应归因于胞状Laves的结构以及胞状Laves相在高温变形过程中的纳米化.

关键词 NiAlLaves相快速凝固微观组织力学性能    
Abstract

The Laves phase strengthening NiAl base composite was fabricated by conventionally casting and rapid solidification, and their microstructure and mechanical properties were investigated together. The results exhibit that the Laves phase in the conventional cast alloy is relative coarse and distributes along the NiAl phase boundary. Moreover, small stick-like Laves phase precipitates in the NiAl phase. Due to the segregation of Ni and Al in Laves phase, it still keeps the C14 crystal structure. The rapid solidification refines the NiAl and Laves phase greatly and promotes the formation of NiAl/Laves phase eutectic structure, which surrounds the NiAl phase and forms the cell-like structure. However, the rapid solidification can not handicap the precipitation of needle-like Laves phase in the NiAl phase. But, the rapid solidification restrains the formation ofα-Cr phase. The compression tests show that the cell-like Laves phase strengthening NiAl base composite has better mechanical properties at ambient and elevated temperature, compared with the conventional cast alloy. The improvement of mechanical properties should be attributed to the cell-like Laves phase and the nanocrystallization of the cell-like Laves phase during high-temperature deformation.

Key wordsNiAl    Laves phase    rapid solidification    microstructure    mechanical properties
收稿日期: 2013-07-16     
基金资助:

国家重点基础研究发展计划项目2012CB933600, 中国博士后基金项目2012M510271,国家自然科学基金项目31370956, 深圳战略新兴产业发展专项资金项目JCYJ20130402172114948和JCYJ20130402164725011资助

作者简介: 盛立远, 男, 1979年生, 副研究员

[1] Miracle D B.  Acta Metall Mater, 1993; 41: 649

[2] Guo J T.  Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104
(郭建亭. 有序金属间化合物镍铝合金. 北京: 科学出版社, 2003: 104)
[3] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q.  Mater Sci Eng, 2012; A555: 131
[4] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q.  Mater Sci Eng, 2011; A528: 8324
[5] Cline H E, Walter J L.  Metall Trans, 1970; 1: 2907
[6] Sheng L Y, Guo J T, Zhang W, Xie Y, Zhou L Z, Ye H Q.  Acta Metall Sin, 2009; 45: 1025
(盛立远, 郭建亭, 章炜, 谢亿, 周兰章, 叶恒强. 金属学报, 2009; 45: 1025)
[7] Chen X F, Johnson D R, Noebe R D, Olliver B F.  J Mater Res, 1995; 10: 1159
[8] Zeumer B, Sauthoff G.  Intermetallics, 1997; 5: 641
[9] Johnson D R, Chen X F, Oliver B F, Noebe R D, Whittenberger J D.Intermetallics, 1995; 3: 141
[10] Sheng L Y, Guo J T, Ye H Q.  Mater Des, 2009; 30: 964
[11] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q.  Mater Des, 2011; 32: 4810
[12] Sheng L Y, Guo J T, Ren W L, Zhang Z X, Ren Z M, Ye H Q.  Intermetallics, 2011; 19: 143
[13] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T.  Trans Nonferrous Met Soc China, 2013; 23: 983
[14] Kazantzis A V, Aindow M, Jones I P.  Mater Sci Eng, 1997; A233: 44
[15] Bewlay B P, Sutliff J A, Jackson M R, Lipsitt H A.  Acta Metall Mater, 1994; 42: 2869
[16] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T.  Intermetallics, 2012; 27: 14
[17] Sheng L Y, Zhang W, Guo J T, Zhou L Z, Ye H Q.  Intermetallics, 2009; 17: 1115
[18] Sheng L Y, Guo J T, Xi T F, Zhang B C, Ye H Q.  Prog Nat Sci: Mater Int, 2012; 22: 231
[19] Sheng L Y, Zhang W, Guo J T, Ye H Q.  Mater Charact, 2009; 60: 1311
[20] Takeyama M, Liu C T.  Mater Sci Eng, 1991; A132: 61
[21] Lu K, Lu L, Suresh S.  Science, 2009; 324: 349
[22] Sheng L Y, Zhang W, Guo J T, Yang F, Liang Y C, Ye H Q.  Intermetallics, 2010; 18: 740
[23] Sheng L Y, Yang F, Xi T F, Guo J T.  J Alloys Compd, 2013; 554: 182
[24] Sheng L Y, Yang F, Guo J T, Xi T F, Ye H Q.  Composites, 2013; 45B: 785
[25] Zhang J H, Leng Z, Liu S J, Li J Q, Zhang M L, Wu R Z.  J Alloys Compd, 2011; 509: 7717
[26] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ye H Q.  Mater Des, 2009; 30: 2752
[27] Roland J C, Reis D, Vian B, Roy S.  Biol Cell, 1989; 67: 209
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.