Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1113-1120    DOI: 10.3724/SP.J.1037.2013.00268
  论文 本期目录 | 过刊浏览 |
铝合金表面缓蚀自修复疏水性膜层的制备与表征
潘晓铭,吴俊升,肖葵,高书君,裴礼鸿,田然,李晓刚
北京科技大学腐蚀与防护中心, 北京 100083
PREPARATION AND CHARACTERIZATION OF ANTICORROSION SELF-HEALING AND HYDROPHOBIC COATING ON ALUMINUM ALLOY
PAN Xiaoming, WU Junsheng, XIAO Kui, GAO Shujun, PEI Lihong, TIAN Ran, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

潘晓铭,吴俊升,肖葵,高书君,裴礼鸿,田然,李晓刚. 铝合金表面缓蚀自修复疏水性膜层的制备与表征[J]. 金属学报, 2013, 49(9): 1113-1120.
PAN Xiaoming, WU Junsheng, XIAO Kui, GAO Shujun, PEI Lihong, TIAN Ran, LI Xiaogang. PREPARATION AND CHARACTERIZATION OF ANTICORROSION SELF-HEALING AND HYDROPHOBIC COATING ON ALUMINUM ALLOY[J]. Acta Metall Sin, 2013, 49(9): 1113-1120.

全文: PDF(2397 KB)  
摘要: 

以正辛基三乙氧基硅烷(TEOCS)和正硅酸乙酯(TEOS)作为前驱体,采用溶胶-凝胶法在铝合金表面制备一种硅烷改性膜层,并研究掺杂不同含量铈盐(Ce(NO3)3•6H2O)对膜层性能的影响.通过原子力显微镜、接触角测试、电化学阻抗谱和扫描电化学显微镜对掺杂前后膜层的表面形貌、润湿性、耐腐蚀性和自修复性能进行了表征. 结果表明, 当掺杂铈盐的含量为0.005 mol/L时,膜层具有较少的缺陷、较好的疏水性以及良好的耐蚀自修复性.

关键词 铝合金溶胶-凝胶铈盐耐腐蚀自修复疏水性    
Abstract

Aluminum alloy has been widely used as the basic material in many industries because of its low density and high strength to weight ratio. Poor resistance to corrosion, however, limits the variety of practical applications of aluminum alloy. Traditionally, this problem was faced with the use of chromate conversion coatings which result in effective corrosion protection because of the self-healing property. However, the presence of toxic hexavalent chromium compounds makes those coatings very hazardous to the environment. Consequently, it is necessary to develop new environmentally compliant, chromate (VI)-free alternatives. Recently, sol-gel technology provides a new promising approach to prepare protective coatings on aluminum alloy. It has many advantages, such as the simple operation and environmental protection, etc. In this work, an Ormosil coating was developed on aluminum alloy through the sol-gel method using triethoxyoctylsilane (TEOCS) and tetraethylorthosilicate (TEOS) as the precursors. The sol-gel coatings were deposited by dip-coating method on aluminum alloy substrate. The sol-gel coatings doped with different concentrations of cerium salt (Ce(NO3)3•6H2O) were investigated. Surface morphology, wettability, anti-corrosion and self-healing of the sol-gel coatings non-doped and doped cerium salt were characterized by using atomic force microscopy, contact angle measurements, electrochemical impedance spectroscopy and scanning electrochemical microscopy. The hydrophobic of the coatings was evaluated by means of contact angle measurements. The corrosion resistance of the coatings was investigated by means of electrochemical impedance spectroscopy measurements, and the anti-corrosion, self-healing properties were discussed based on equivalent circuit fitting. The corrosion behavior of the damaged sol-gel coatings was studied by scanning electrochemical microscopy. The results indicated that it had a marked effect on the surface morphology, corrosion resistance and hydrophobicity when cerium salt was added to the Ormosil sol-gel coating. The contact angle of the Ormosil sol-gel coating is about 92.0°. Cerium salt doped coatings have a better hydrophobicity due to marked improvement of the surface morphology. This positive effect was more evident when the concentration of the doped cerium salt is 0.005 mol/L in the silane solution. It was found that cerium salt dopedcoatings were less resistant to corrosion than non-doped coating at initial immersion. However, the coating doped with 0.005 mol/L cerium salt rendered improved protection after longer time immersion because of the inhibitive action of Ce3+. It can be released at the defects, hindering the further corrosion reactions at defective sites and showing the self-healing ability of the doped with cerium salt Ormosil sol-gel coating.

Key wordsaluminum alloy    sol-gel    cerium salt    anti-corrosion    self-healing, hydrophobic
收稿日期: 2013-05-14     
基金资助:

国家自然科学基金项目50701006, 51271031和中央高校基本科研业务费专项资金项目FRF-SD-12-027A资助

作者简介: 潘晓铭, 男, 1987年生, 硕士生

[1] Jerman I, Vuk A S, Kozelj M, Orel B, Kovac J.Langmuir, 2008; 24: 5029

[2] Jerman I, Orel B, Vuk A S, Kozelj M, Kovac J.Thin Solid Films, 2010; 518: 2710
[3] Jerman I, Vuk A S, Kozelj M, Segl F,Orel B.  Prog Org Coat, 2011; 72: 334
[4] Hench L L, West J K.  Chem Rev, 1990; 90: 33
[5] Gusmano G, Montesperelli G, Rapone M, Padeletti G, Cusma A,Kaciulis S, Mezzi A, Maggio R D.  Surf Coat Technol, 2007; 201: 5822
[6] Hassannejad H, Shahrabi T, Aliofkhazraei M.  Surf Eng, 2009; 25: 393
[7] Hamdy A S, Butt D P.  J Mater Process Technol, 2007; 181: 76
[8] Du Y J, Damron M, Tang G, Zheng H X, Chu C J, Osborne J H.  Prog Org Coat, 2001; 41: 226
[9] Zandi-Zand R, Ershad-Langroudi A, Rahimi A J.  Non-Cryst Solids, 2005; 351: 1307
[10] Tavandashti N P, Sanjabi S, Shahrabi T.  Prog Org Coat, 2009; 65: 182
[11] Li H, Li C, Wang J Y.  Acta Mater Compos Sin, 2010; 27: 38
(李恒, 李澄, 王加余. 复合材料学报, 2010; 27: 38)
[12] Gonzalez E, Pavez J, Azocar I, Zagal J H, Zhou X, Melo F, Thompson G E,Paz M A.  Electrochim Acta, 2011; 56: 7586
[13] Wang D, Bierwagen G P.  Prog Org Coat, 2009; 64: 327
[14] Gu G, Zhang Z, Dang H.  Mater Res Bull, 2004; 39: 1037
[15] Ganbavle V V, Latthe S S, Amahadik S, Bangi U K H, Mahadik S A, Rao A V.Surf Coat Technol, 2011; 205: 5338
[16] Purcar V, Stamatin I, Cinteza O, Petcu C, Raditoiu V, Ghiurea M, Miclaus T,Andronie A.  Surf Coat Technol, 2012; 206: 4449
[17] Li J, Cao J, Huo L.  Mater Lett, 2012; 87: 146
[18] Zhang X X, Xia B B, Ding B, Zhang Y L, Luo J H, Jiang B.  Mater Lett, 2013,http://dx.doi. org/10.1016/j.matlet.2013.04.016
[19] Zaharescu M, Predoana L, Barau A.  Corros Sci, 2009; 51: 1998
[20] Akid R, Gobara M, Wang H.  Electrochim Acta, 2011; 56: 2483
[21] Tavandashti N P, Sanjabi S.  Prog Org Coat, 2010; 69: 384
[22] Hinton B R W, Arnott D R, Ryan N E.  Met Forum, 1984; 7: 211
[23] Machkova M, Matter E A, Kozhukharov S.  Corros Sci, 2013; 69: 396
[24] Shi H, Han E, Liu F C.  Corros Sci, 2011; 53: 2374
[25] Shi H, Liu F C, Han E.  Mater Chem Phys, 2010; 124: 291
[26] Lakshmi R V, Yoganandan G, Kavya K T.  Prog Org Coat, 2013; 76: 367
[27] Zhang J T, Yang C Y, Pan L, Li C D.  Acta Metall Sin, 2008; 44: 1372
(张金涛, 杨春勇, 潘亮, 李春东. 金属学报, 2008; 44: 1372)
[28] Voevodin N N, Kurdziel J W, Mantz R.  Surf Coat Technol, 2006; 20: 1080
[29] Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M.  J Sol-Gel Sci Technol, 2012; 61: 600
[30] Zhao K, Yang B P, Zhang J Y.  J Mater Sci Eng, 2010; 28: 448
(赵坤, 杨保平, 张俊彦. 材料科学与工程学报, 2010; 28: 448)
[31] Luo H Y, Wang F, Wang J G, Li Y N.  Mater Prot, 2011; 44: 64
(罗和义, 王芳, 王景刚, 李彦妮. 材料保护, 2011; 44: 64)
[32] Li C H, Zhao Z B, Chen Y Q.  Sci Technol Chem Ind, 2005; 13: 26
(李春红, 赵之彬, 陈玉清. 化工科技, 2005; 13: 26)
[33] Li D C, Tong Z, Chen F F.  Membr Sci Technol, 2011; 31: 29
(李大川, 同帜, 陈方方. 膜科学与技术, 2011; 31: 29)
[34] Peng S, Zhao W, Zeng Z, Li H, Xue Q, Wu X.  J Sol-Gel Sci Technol, 2013; 66: 133
[35] Zheludkevich M L, Yasakau K A, Bastos A C, Karavai O V, Ferreira M G S.  Electrochem Commun,2007; 9: 2622
[36] Cao F H, Zhang Z, Cheng Y L, Li J F, Zhang J Q, Cao C N.  Acta Metall Sin (Engl Lett),2003; 16: 319
[37] Kasten L S, Grant J T, Grebasch N, Voevodin N, Arnold F E, Donley M S.Surf Coat Technol, 2001; 140: 11
[38] Gonzalez-Garcia Y, Mol J M C, Muselle T, Graeve I D, Assche G V,Scheltjens G, Mele B V, Terryn H.  Electrochem Commun, 2011; 13: 169
[39] Pust S E, Maier W, Wittstock G.  Z Phys Chem, 2008; 22: 463
[40] Niu L, Yin Y, Guo W, Lu M, Qin R, Chen S.  J Mater Sci, 2009; 44: 4511
[41] Izquierdo J, Nagy L, Varga A, Bitter I, Nagy G, Souto R M.Electrochim Acta, 2012; 59: 398
[42] Souto R M, Santana J J, Fernandez-Merida L, Gonzalez S.  Electrochim Acta, 2011; 56: 9596
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[5] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[7] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[11] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[12] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[13] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[14] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[15] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.