|
|
砂型3DP打印参数对ZL205A合金铸造性能的影响 |
王春辉1, 杨光昱1( ), 阿热达克·阿力玛斯1, 李晓刚2, 介万奇1 |
1.西北工业大学 凝固技术国家重点实验室 西安 710072 2.西北工业集团有限公司 西安 710043 |
|
Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy |
WANG Chunhui1, YANG Guangyu1( ), ALIMASI Aredake1, LI Xiaogang2, JIE Wanqi1 |
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2.Northwest Industries Group Co. Ltd., Xi'an 710043, China |
引用本文:
王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
Chunhui WANG,
Guangyu YANG,
Aredake ALIMASI,
Xiaogang LI,
Wanqi JIE.
Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. Acta Metall Sin, 2022, 58(7): 921-931.
1 |
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4: 11
|
2 |
Ma T, Li Z, Cheng Q, et al. Analyswas of the application prospect of 3D printing technology in the field of sand casting [J]. Mod. Cast Iron, 2019, 39(2): 38
|
2 |
马 涛, 李 哲, 程 勤 等. 3D打印技术在砂型铸造领域的应用前景浅析 [J]. 现代铸铁, 2019, 39(2): 38
|
3 |
Ye W, Qu S, Zhao J H. Interpretation of China's green smart casting development roadmap [A]. Proceedings of the 2018 Chongqing Foundry Annual Conference [C]. Chongqing: Foundry Institution of Chongqing Mechanical Engineering Society, 2018: 6
|
3 |
叶 未, 屈 伸, 赵建华. 中国绿色智能铸造发展路线图解读 [A]. 2018重庆市铸造年会论文集 [C]. 重庆: 重庆市机械工程学会铸造分会, 2018: 6
|
4 |
Xiao J J, Wang P C, Li X C, et al. Direct shell production casting by selective laser sintering precoated resin sand [J]. Found. Technol., 2008, 29: 24
|
4 |
肖军杰, 王鹏程, 李小城 等. 激光选区烧结覆膜树脂砂的直接铸型制造 [J]. 铸造技术, 2008, 29: 24
|
5 |
Le Néel T A, Mognol P, Hascoët J Y. A review on additive manufacturing of sand molds by binder jetting and selective laser sintering [J]. Rapid Prototyp. J., 2018, 24: 1325
doi: 10.1108/RPJ-10-2016-0161
|
6 |
Gill S S, Kaplas M. Comparative study of 3D printing technologies for rapid casting of aluminium alloy [J]. Mater. Manuf. Processes, 2009, 24: 1405
doi: 10.1080/10426910902997571
|
7 |
Dimitrov D, Schreve K, De Beer N. Advances in three dimensional printing—State of the art and future perspectives [J]. Rapid Prototyp. J., 2006, 12: 136
doi: 10.1108/13552540610670717
|
8 |
Chhabra M, Singh R. Rapid casting solutions: A review [J]. Rapid Prototyp. J., 2011, 17: 328
doi: 10.1108/13552541111156469
|
9 |
Utela B, Storti D, Anderson R, et al. A review of process development steps for new material systems in three dimensional printing (3DP) [J]. J. Manuf. Processes, 2008, 10: 96
doi: 10.1016/j.jmapro.2009.03.002
|
10 |
Wang A H, Jin T S. Inkjet 3D printing casting industry applications and advantages [A]. Proceedings of the 2017 China Foundry Activity Week [C]. Suzhou: Foundry Institution of Chinese Mechanical Engineering Society, 2017: 546
|
10 |
王爱辉, 金天拾. 喷墨3D打印铸造行业应用及优势 [A]. 2017中国铸造活动周论文集 [C]. 苏州: 中国机械工程学会铸造分会, 2017: 546
|
11 |
Kang J W, Ma Q X. The role and impact of 3D printing technologies in casting [J]. China Found., 2017, 14: 157
|
12 |
Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores [J]. Int. J. Metalcast., 2016, 10: 240
doi: 10.1007/s40962-016-0027-5
|
13 |
Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds [J]. Adv. Eng. Mater., 2015, 17: 923
doi: 10.1002/adem.201400524
|
14 |
Jin F. New Development of 3D printing technology for inkjet sand mould based on binder jetting [J]. Mechan. Electr. Eng. Technol., 2018, 47(9): 109
|
14 |
金 枫. 基于粘结剂喷射的喷墨砂型三维打印技术新进展 [J]. 机电工程技术, 2018, 47(9): 109
|
15 |
Dong S, Zhao H T, Wu G. Comparison and application analysis of 3D printing technology for sand casting mold [J]. Tec. Automat. Appl., 2019, 38(11): 154
|
15 |
董 莘, 赵寒涛, 吴 冈. 铸造砂型3D打印技术的对比与应用分析 [J]. 自动化技术与应用, 2019, 38(11): 154
|
16 |
Zhang D S, Yang J M, Huang D Z, et al. Development and research status of three dimensional printing technology with 3DP [J]. Manuf. Technol. Mach. Tool, 2017, (3): 38
|
16 |
张迪湦, 杨建明, 黄大志 等. 3DP法三维打印技术的发展与研究现状 [J]. 制造技术与机床, 2017, (3): 38
|
17 |
Wu H B, Gao W L, Song X F, et al. A comparative study of 3D printing consumables influencing resin sand properties [J]. Mod. Cast Iron, 2019, 39(5): 48
|
17 |
吴红兵, 高文理, 宋贤发 等. 3D打印耗材对树脂砂型性能影响的对比研究 [J]. 现代铸铁, 2019, 39(5): 48
|
18 |
Lin S K, Dong X P, Guo T, et al. 3DP printing sand casting technology for high-graded automobile stamping die casting steel parts [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 392
|
18 |
林少凯, 董选普, 郭 艇 等. 高端汽车冲压模铸钢件的3DP打印砂型铸造技术 [J]. 特种铸造及有色合金, 2020, 40: 392
|
19 |
Yang G Y, Jie W Q, Zhang R Q, et al. Behavior of microstructure evolution of ZL205A cast aluminum alloy during semi-solid isothermal annealing process [J]. Rare Met. Mater. Eng., 2007, 36: 1717
|
19 |
杨光昱, 介万奇, 张润强 等. ZL205A铝合金近液相线等温半固态组织转变特性 [J]. 稀有金属材料与工程, 2007, 36: 1717
|
20 |
Zhou Z B, Kou H C, Li J S, et al. Study on the hot tearing tendency of ZL205A alloy [A]. Proceedings of the 2012 China foundry activity week [C]. Suzhou: Foundry Institution of Chinese Mechanical Engineering Society, 2012: 614
|
20 |
周中波, 寇宏超, 李金山 等. ZL205A合金热裂倾向研究 [A]. 2012中国铸造活动周论文集 [C]. 苏州: 中国机械工程学会铸造分会, 2012: 614
|
21 |
Cai Q, Zhang X B, Zhang Y J, et al. Research of hot tearing behavior of ZL205A alloy based on ProCAST numerical simulation [J]. Found. Technol., 2015, 36: 1503
|
21 |
蔡 庆, 张晓波, 张亦杰 等. 基于ProCAST数值模拟ZL205A热裂行为的研究 [J]. 铸造技术, 2015, 36: 1503
|
22 |
Li X, Wang T, Rong F J, et al. Study on the defects of ZL205 alloy shell castings [A]. Proceedings of the 2019 China foundry activity week [C]. Wuhan: Foundry Institution of Chinese Mechanical Engineering Society, 2019: 721
|
22 |
李 笑, 王 涛, 荣福杰 等. ZL205合金壳体铸件缺陷研究 [A]. 2019中国铸造活动周论文集 [C]. 武汉: 中国机械工程学会铸造分会, 2019: 721
|
23 |
Suyitno, Eskin D G, Katgerman L. Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting [J]. Mater. Sci. Eng., 2006, A420: 1
|
24 |
Gao Z M, Jie W Q, Liu Y Q, et al. Formation Mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
|
24 |
高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
|
25 |
Khandelwal H, Ravi B. Effect of binder composition on the shrinkage of chemically bonded sand cores [J]. Mater. Manuf. Processes, 2015, 30: 1465
doi: 10.1080/10426914.2014.994779
|
26 |
Xue L, Hu C A, Li X, et al. Research on the influence of furan resin addition on the performance and accuracy of 3D printing sand mold [J]. IOP Conf. Ser., 2018, 392: 062044
|
27 |
Feng Z P, Xu G Q, Liu G Q. Research on factors influencing of 3D-printed furan resin viscosity on seep and sand strength [J]. Found. Equip. Technol., 2020, (5): 49
|
27 |
冯正鹏, 徐国强, 刘国强. 3D打印呋喃树脂黏度对渗透及砂型强度影响的研究 [J]. 铸造设备与工艺, 2020, (5): 49
|
28 |
Xing J L, He L, Han W, et al. Research on synthesis and performance of a high-strength and high-temperature resistant phenolic resin used in three dimensional printing of sand mold [J]. Foundry, 2016, 65: 966
|
28 |
邢金龙, 何 龙, 韩 文 等. 一种3D砂型打印用高强度耐高温酚醛树脂的合成及其使用性能研究 [J]. 铸造, 2016, 65: 966
|
29 |
Snelling D A, Williams C B, Druschitz A P. Mechanical and material properties of castings produced via 3D printed molds [J]. Addit. Manuf., 2019, 27: 199
doi: 10.1016/j.addma.2019.03.004
|
30 |
Sivarupan T, El Mansori M, Coniglio N, et al. Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds [J]. J. Manuf. Process, 2020, 54: 420
doi: 10.1016/j.jmapro.2020.02.043
|
31 |
Deng C Y, Kang J W, Shangguan H L, et al. Insulation effect of air cavity in sand mold using 3D printing technology [J]. China Foundry, 2018, 15: 37
doi: 10.1007/s41230-018-7243-y
|
32 |
Gao G L, Zhang W K, Du Z M, et al. Application of forming process parameters for 3D printing sand mold and core [J]. Foundry, 2020, 69: 627
|
32 |
高桂丽, 张伟坤, 杜志敏 等. 基于喷墨3D打印的铸造砂型(芯)成形工艺参数应用研究 [J]. 铸造, 2020, 69: 627
|
33 |
Xu W Y, Chen W P, Jin F, et al. Study of cartridge receiver gravity casting process based on 3D printing sand mold and numerical simulation [J]. Foundry, 2019, 68: 905
|
33 |
徐伟业, 陈维平, 金 枫 等. 基于数值模拟和砂型3D打印的机匣整体重力铸造工艺研究 [J]. 铸造, 2019, 68: 905
|
34 |
Ni Y Q, Wang J, Chen X M, et al. Development of rapid casting technology for cylinder block based on sand core 3D printing technology [J]. Foundry, 2019, 68: 911
|
34 |
倪允强, 王 佳, 陈秀明 等. 基于砂型3D打印技术的气缸体快速铸造工艺开发 [J]. 铸造, 2019, 68: 911
|
35 |
Si J M, Lü S L, Li J J, et al. Manufacture of large thin wall electronic case framework based on process simulation and 3DP sand mold [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1384
|
35 |
司金梅, 吕三雷, 李晶晶 等. 基于工艺仿真和3DP砂型的大型薄壁电子机箱骨架制造 [J]. 特种铸造及有色合金, 2020, 40: 1384
|
36 |
Hong R Z, Zhou Y J, Zuo Q, et al. Manufacturing of integrated complex aluminium shell based on simulation and 3D printed sand mold [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 1192
|
36 |
洪润洲, 周永江, 左 强 等. 基于仿真与3D打印砂型的复杂铝合金壳体制造 [J]. 特种铸造及有色合金, 2019, 39: 1192
|
37 |
Li X Y. Casting Handbook Volume 5: Casting Process [M]. 3rd Ed., Beijing: China Machine Press, 2011: 12
|
37 |
李新亚. 铸造手册-第5卷-铸造工艺 [M]. 第 3版, 北京: 机械工业出版社, 2011: 12
|
38 |
Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
doi: 10.1002/adem.201800139
|
39 |
Cao G, Kou S. Hot cracking of binary Mg-Al alloy castings [J]. Mater. Sci. Eng., 2006, A417: 230
|
40 |
Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys [J]. Acta Metall. Sin., 2019, 55: 389
|
40 |
刘耀鸿, 王朝辉, 刘 轲 等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
doi: 10.11900/0412.1961.2018.00399
|
41 |
Chen Z P, Ye F Y. Effects of resin content and heat treatment temperature on the tensile strength of sand molds fabricated by three-dimensional printing [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1380
|
41 |
陈志平, 叶福源. 树脂和热处理对3D打印成形砂型抗拉强度的影响 [J]. 特种铸造及有色合金, 2020, 40: 1380
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|