Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1121-1130    DOI: 10.3724/SP.J.1037.2013.00101
  论文 本期目录 | 过刊浏览 |
Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征
周小卫,沈以赴
南京航空航天大学材料科学与技术学院, 南京 210016
CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION
ZHOU Xiaowei,SHEN Yifu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
引用本文:

周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. Acta Metall Sin, 2013, 49(9): 1121-1130.

全文: PDF(2717 KB)  
摘要: 

借助超声辅助脉冲电沉积的方法在Watts-Ni电解液体系中制备了纳米晶纯Ni和Ni-CeO2复合镀层.采用电化学阻抗谱 (EIS) 测量和等效拟合电路解析, 并结合静态浸泡腐蚀实验及其产物分析,研究了纳米CeO2颗粒对Ni镀层在3.5% NaCl+1.5%HCl(质量分数)混合水溶液 (简称酸性NaCl溶液) 中腐蚀性能的影响. 结果表明:经600℃, 4 h 空气中的时效处理, 可促使被填埋在镀层表面的稀土复合相沿晶界析出,并形成连续致密的弥散相钝化膜, 填补并黏性钉扎由于电沉积析氢反应而遗留在镀层表面的微孔或热裂纹等缺陷,有效减少点蚀或晶间腐蚀的发生; 动态极化曲线(Tafel)测定表明,纳米晶纯Ni和Ni-CeO2复合镀层在酸性NaCl溶液中均表现出明显的自钝化过渡区,后者自腐蚀电流较前者降低了近1.5个数量级; 此外, EIS测试显示,纯Ni镀层的EIS由一个高频容抗弧和一个中低频扩散弧组成, 时效处理前后Ni-CeO2镀层的EIS均呈现单一容抗弧特征,且相位角在更宽的频率范围内接近90°, 从而表现出优异的抗腐蚀性能.在酸性NaCl溶液长期浸泡过程中, 少量的Ce3+从CeO2弥散相中被还原释放出来作为缓蚀剂吸附在活性区域,提高了复合镀层的抗腐蚀性能; 腐蚀形貌观察显示, Ni-CeO2镀层表面呈现轻微的均匀腐蚀并被胶状不溶解的腐蚀产物所覆盖,而纯Ni镀层表面则出现了严重的点蚀现象; 对腐蚀产物进行XRD和XPS测试分析表明,纯Ni试样表层主要积累了NiCl2Ni(OH)2等腐蚀产物;而Ni-CeO2除含有上述这些主要产物之外, 还包含CeCl3和CeO2等微溶相,覆盖并封堵点蚀源, 可有效地阻止Cl-的扩散渗透行为.

关键词 纳米晶镀层腐蚀行为电化学阻抗谱(EIS)稀土吸附缓蚀机理    
Abstract

Pure Ni and Ni-CeO2 nanocrystalline coatings were prepared from a Watts-nickel electrolyte using ultrasonic-assisted pulse electro deposition. Effect of incorporating CeO2 addition on their corrosion behavior in a 3.5%NaCl+1.5%HCl (mass fraction) solution was evaluated by electrochemical impedance spectroscopy (EIS) and equivalent electric circuits (EECs). Meanwhile, static immersion tests and the analysis of corrosion products were carried out. Experimental results indicated that the existence of CeO2 phase in the Ni coatings promoted an effective dispersion strengthening after aged at 600℃ for 4 h in air, and also produced a continuous Ce-rich oxide sale acted as the passive layer covered on the coating surface to reduce pinholes or micro cracks that generated from hydrogen evolution reactions during electrochemical deposition, hence resulting in the decrease of localized corrosion or intergranular attack by Cl-. Based on the observed results from potentiodynamic polarization curves, they exhibited an obvious passivation transition attached with a reducing corrosion current density by lower than 1.5 orders of magnitude of Ni-CeO2 coatings (600℃) as relative to pure Ni. EIS measurements for pure Ni displayed a high frequency capacitive arc together with a middle-low frequency diffusion arc. While for the Ni-CeO2 coatings, they displayed module of capacitive arc with a wide frequency area of phase angle close to 90° so as to confirm superior anti-corrosion property. During long-term static immersion tests in an acid NaCl solution, a small amount of Ce3+ released from CeO2 phase were served as the corrosion inhibitors by means of making strong adsorption onto the exposed area for increasingcorrosion resistance. With the presence of CeO2 addition, slightly uniform corrosion was observed on the surface of Ni-CeO2 coatings as compared to severely pitting corrosion of pure Ni. According to the determination of corrosion products by XRD and XPS, both of their corrosion products were mainly composed of NiCl2 and Ni(OH)2, while some insoluble products of CeCl3 and CeO2 phase generated on the surface of Ni-CeO2 coatings, thereby achieving such insoluble corrosion products covered on pitting holes of localized corrosion to preclude the exposed area from corrosive attack and diffusion behavior by Cl-.

Key wordsnanocrystalline coating    corrosion behavior    electrochemical impedance spectroscopy (EIS)    RE adsorption, inhibition mechanism
收稿日期: 2013-03-04     
基金资助:

中央高校基本科研业务费项目和江苏省普通高校研究生科研创新计划项目CXLX12-0151资助

作者简介: 周小卫, 男, 1983年生, 博士生

[1] Dutta R S, Tewari R, De P K.  Corros Sci, 2007; 49: 303

[2] Jin H M, Chen R F, Zhang J F, Felix A C.  Mater Mech Eng, 2004; 28: 7
(靳惠明, 陈荣发, 张剑峰, Felix A C. 机械工程材料, 2004; 28: 7)
[3] Qu N S, Zhu D, Chan K C.  Scr Mater, 2006; 54: 1421
[4] Sen R, Das S, Das K.  Mater Res Bull, 2012; 47: 478
[5] Xue Y J, Liu H B, Lan M M, Ku X C, Li J S.  Chin J Nonferrous Met, 2010; 20: 1599
(薛玉君, 刘红彬, 兰明明, 库祥臣, 李济顺. 中国有色金属学报, 2010; 20: 1599)
[6] Sen R, Das S, Das K.  Surf Coat Technol, 2011; 205: 3847
[7] Mihalache V, Pasuk I.  Acta Mater, 2011; 59: 4875
[8] Arsenault R J.  Scr Metall Mater, 1991; 25: 2617
[9] Aruna S T, William Grips V K, Ezhil Selvi V, Rajam K S.  J Appl Electrochem, 2007; 37: 991
[10] Dias S A S, Lamak S V, Nogueira C A , Diamantinoa T C, Ferreira M G S.Corros Sci, 2012; 62: 153
[11] Zhou X W, Shen Y F, Gu D D.  Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[12] Zhou X W, Shen Y F, Zheng Y Y, Jin H M.  J Rare Earths, 2011; 29: 883
[13] Yu X W, Cao C N, Lin H C.  Chin Rare Earths, 2000; 18: 243
(于兴文, 曹楚南, 林海潮. 稀土学报, 2000; 18: 243)
[14] Simon J, Elizabeth A K, William G F, Matthew J O.  Corros Sci, 2012; 60: 290
[15] Stern M, Geary A L.  J Electrochem Soc, 1957; 104: 56.
[16] Yong X Y, Liu J J, Lin Y Z.  Acta Metall Sin, 2005; 41: 871
(雍兴跃, 刘景军, 林玉珍. 金属学报, 2005; 41: 871)
[17] Aruna S T, Bindu C N, Ezhil Selvi V, William Grips V K, Rajam K S.Surf Coat Technol, 2006; 200: 6871
[18] Conde A, Damborenea J.  Corros Sci, 2000; 42: 1363
[19] Gray J J, Orme C A.  Electrochimica Acta, 2007; 52: 2370
[20] Wang B, Liu Q Y, Mao X P, Weng Y, Wang X D, Jia S J, Dong H.  Acta Metall Sin, 2008; 44: 863
(汪兵, 刘清友, 毛新平, 翁宇, 王向东, 贾书君, 董瀚. 金属学报, 2008; 44: 863)
[21] Czerwinski F, Szpunar J A.  Thin Solid Films, 1996; 289: 213
[22] Czerwinski F, Smeltzer W W.  Oxid Met, 1993; 40: 503
[23] Hinton B R W, Arnott D R, Ryan N E.  Mater Form, 1986; 9: 162
[24] Zamanzad-Ghavidel M R, Raeissi K, Saatchi A.  Mater Lett, 2009; 63: 1807
[25] Hasannejad H, Shahrabi T, Jafarian M, Sabour Rouhaghdam A.  J Alloys Compd,2011; 509: 1924
[26] Muhamed A P, Shibli S M A.  Electrochem Commun, 2007; 9: 443
[27] Thanneeru R, Patil S, Deshpande S, Seal S.  Acta Mater, 2007; 55: 3457
[1] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[4] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[5] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[6] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[7] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[8] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[9] 何新快,侯柏龙,江雨妹,李晨,吴璐烨. H2SO4溶液中咪唑和2—苯基—2—咪唑啉对Cu的缓蚀性能和吸附行为[J]. 金属学报, 2013, 49(8): 1017-1024.
[10] 郝雪卉,董俊华,魏洁,柯伟,王长罡,徐小连,叶其斌. AH32耐蚀钢显微组织对其腐蚀行为的影响[J]. 金属学报, 2012, 48(5): 534-540.
[11] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[12] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[13] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[14] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.
[15] 袁蕾 王华明 . 镍基固溶体增韧Cr13Ni5Si2合金在含Cl-溶液中的腐蚀行为[J]. 金属学报, 2009, 45(11): 1384-1389.