Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1105-1112    DOI: 10.3724/SP.J.1037.2013.00184
  论文 本期目录 | 过刊浏览 |
热处理工艺对透氢V55Ti30Ni15合金的显微组织和硬度的影响
江鹏,于彦东
哈尔滨理工大学材料科学与工程学院, 哈尔滨 150040
EFFECT OF HEAT TREATMENT PROCESS ON MICROSTRUCTURE AND HARDNESS OF V55Ti 30Ni 15 ALLOY FOR HYDROGEN PERMEATION
JIANG Peng, YU Yandong
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040
引用本文:

江鹏,于彦东. 热处理工艺对透氢V55Ti30Ni15合金的显微组织和硬度的影响[J]. 金属学报, 2013, 49(9): 1105-1112.
JIANG Peng, YU Yandong. EFFECT OF HEAT TREATMENT PROCESS ON MICROSTRUCTURE AND HARDNESS OF V55Ti 30Ni 15 ALLOY FOR HYDROGEN PERMEATION[J]. Acta Metall Sin, 2013, 49(9): 1105-1112.

全文: PDF(4098 KB)  
摘要: 

采用硬度测试、金相显微镜、X射线衍射、扫描电镜、透射电镜和能谱分析技术, 研究热处理工艺对V55Ti30Ni15合金组织和硬度的影响.不同热处理温度和时间下的合金显微组织对合金硬度有很大影响.研究结果表明:铸态合金由过饱和钒基固溶体以及非平衡的NiTi和NiTi2相组成.合金在750和800℃热处理时, 细小NiTi粒子从过饱和钒基固溶体中析出,随着保温时间延长, NiTi粒子析出增多.NiTi粒子析出降低了钒基固溶体的晶格畸变度, 合金硬度降低.合金在850和900℃热处理时, NiTi析出粒子逐步回溶到钒基固溶体中,晶格畸变度升高, 合金硬度升高. 在900℃热处理初期,合金硬度下降是由于铸造应力的消除, 晶格畸变度降低.而随后由于NiTi2相在相界上聚集球化, 使得合金的硬度开始升高.

关键词 V55Ti30Ni15合金热处理显微组织硬度    
Abstract

V55Ti30Ni15 alloy seems to be a promising alloy as a potential replacement for Pd-based alloy, which may reach a good combination of hydrogen permeability and mechanical stability in hydrogen. Metal rolling process is most widely used for sheet fabrication and may make multiphase V-Ti-Ni metallic membranes being thinner for increasing hydrogen transport flux. Different heat treatment processes have been carried out on a selected V55Ti30Ni15 alloy to soften for improved workability in this work. The effect of heat treated process on microstructure and hardness have been investigated for V55Ti30Ni15 alloy by using hardness measurement, OM, XRD, SEM, EDS and TEM. The microstructures resulting from different heat treatment temperatures and time have a great influence on hardness. Fine NiTi particles precipitate from the V-based supersaturate solid solution when the alloys were heat treated at 750 and 800℃, and the amount of NiTi particles increases with time. Fine NiTi particles precipitate from the V-based supersaturate solid solution results in the decrease in hardness. With increasing temperatures, fine NiTi particles re-dissolve into V-based solid solution, and the alloys hardness increase instead. Solid solution hardening of Ni and Ti elements is greater than precipitation strengthening of fine NiTi particles formed by atomic binding of Ni and Ti in V55Ti30Ni15 alloy. When the alloys were heat treated at 900℃, casting stress and lattice distortion decrease at heat treatment earlier stage, and then NiTi2 phases start to aggregate and spheroidize on phase boundaries with extended time. This causes the phenomenon that the hardness first decrease and then increase.

Key wordsV55Ti30Ni15 alloy    heat treatment    microstructure    hardness
收稿日期: 2013-04-12     
作者简介: 江鹏, 男, 1986年生, 博士生

[1]Philpott J E. Platinum Met Rev, 1985; 29: 12

[2]Lubitz W, Tumas B. Chem Rev, 2007; 107: 3900
[3]Adhikari S, Fernando S. Ind Eng Chem Res, 2006; 45:875
[4]Ward T L, Dao T. J Membr Sci, 1999; 53: 211
[5]Phair JW, Donelson R. Ind Eng Chem Res, 2006; 45:5657
[6]Hunter J B. US Pat, 2773561, 1956
[7]Connor H. Platinum Metals Rev, 1962; 6: 130
[8]Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A.J Membr Sci, 2000; 164: 289
[9]Jiang P, Yu Y D, Song G, Liang D. Rare Met Mater Eng, 2013; 42: 868
(江 鹏, 于彦东, Guangsheng Song, Daniel Liang.稀有金属材料与工程, 2013; 42: 868)
[10]Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D,McLennan K G. J Membr Sci, 2006, 285: 30
[11]Dolan M D. J Membr Sci, 2010; 362: 12
[12]Buxbaum R E, KinneY A B. Ind Eng Chem Res, 1996;35: 530
[13]Wipf H. Phys Scr, 2001; T94: 43
[14]Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2004; 368; 215
[15]Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2005; 405-406; 273
[16]Song G, Dolan M D, Kellam M E, Liang D, Zambelli S.J Alloys Compd, 2011; 509: 9322
[17]Shu J, Grandjean B P A, Van Neste A, Kaliaguine S.Can J Chem Eng, 1991; 69: 1036
[18]Ozaki T, Zhang Y, Komaki M, Nishimura C. Int J Hydrogen Energ, 2003; 28: 297
[19]Nishimura C, Ozaki T, Komaki M, Zhang Y. J Alloys Compd, 2003; 356-357: 295
[20]Ishikawa K, Tokui S, Aoki K. Intermetallics, 2009;17: 109
[21]Xiong L Y, Liu S, Wang L B, Rong L J. Acta Metall Sin, 2008; 44: 781
(熊良银, 刘 实, 王隆保, 戎利建. 金属学报, 2008; 44: 781)
[22]Liu Z W, Wang Z M, Liu F, Hu C H, Zhou H Y. Rare Met Mater Eng, 2011; 40: 1033
(刘战伟, 王仲民, 刘菲, 胡朝浩, 周怀营. 稀有金属材料与工程,2011; 40: 1033)
[23]Liu F, Wang Z M, Huang H W, Deng J Q, Zhou H Y. J Cent South Univ T (Nat Sci), 2012; 43: 3401
(刘 菲, 王仲民, 黄贺伟, 邓健秋, 周怀营.中南大学学报(自然科学版), 2012; 43: 3401)
[24]Massalski, T B, Okamoto, H, Subramanian, P R, Kacprzak, L.Binary Alloy Phase Diagrams. Detroit: ASM International,1996: 2874
[25]Callister W D, Rethwisch D G. Fundamentals of Materials Science and Engineering. New York: John Wiley & Sons,Inc., 2012: 174
[26]Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T.Mater Sci Eng, 1999; 273-275 A: 166
[27]Humbeeck J V. Adv Eng Mater, 2001; 3: 837
[28]Senkov O N, Miracle D B. Mater Res Bull, 2001; 36:2183
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[11] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[12] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.