Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00131
  论文 本期目录 | 过刊浏览 |
Ni-WC纳米复合镀层的制备及钝化性能研究
武占文1,2),陈吉1),朴楠1),杨明川3)
1) 辽宁石油化工大学机械工程学院石油化工过程腐蚀与防护技术中心, 抚顺 113001
2) 中海油能源发展股份有限公司管道工程分公司, 天津 300452
3) 沈阳理工大学装备工程学院, 沈阳 110159
SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING
WU Zhanwen1,2), CHEN Ji1), PIAO Nan1), YANG Mingchuan3)
1) Center of Corrosion and Protection Technology in Petro-Chemical Industry,Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2) CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452
3) Department of Modern Equipment Engineering, Shenyang Ligong University, Shenyang 110159
全文: PDF(1103 KB)  
摘要: 

利用直流复合电镀方法将WC纳米颗粒均匀分散到Ni镀层,用微米压痕仪测试了镀层的力学性能, 用动电位极化曲线研究了镀层在pH=9.0的0.05 mol/L H3BO3+0.075 mol/L Na2B4O7缓冲溶液中的电化学性能. 结果表明, 与纯Ni镀层相比,纳米复合镀层的晶粒尺寸显著减小, 约为21 nm; 硬度提高了81%, 达到651 HV;自腐蚀电流密度降低约一个数量级, 约为1.29×10-7A/cm2;破钝电位基本一致, 但致钝电位(10 mV)更低, 维钝电流密度(1.79×10-6 A/cm2)更小,仅为纯Ni镀层的1/7. 利用Mott-Schottky理论结合点缺陷模型分析表明: 表面钝化膜仍具有p型半导体特征,WC纳米颗粒显著降低基体Ni的晶粒尺寸, 引起钝化膜中点缺陷密度和扩散系数的降低.

关键词 纳米复合镀层Ni-WC腐蚀钝化膜硬度    
Abstract

The metallic matrix composite with ceramic nano-particles has a wide prospect in many applications due to its superior properties. The nanocomposite Ni-WC coating has been synthesized by using DC co-electrodeposition of Ni with WC nano-particles. Its hardness was measured by using ultra-micro hardness tester. Its corrosion and passive properties were investigated in 0.05 mol/L H3BO3+0.075 mol/L Na2B4O7 buffer solution with pH=9.0 by using potentiodynamic polarization measurement. As compared to pure nanocrystalline (nc) Ni, nanocomposite refined remarkably, with average grain size about 21 nm and the hardness increase of 80%, reaching about 651 HV. The corrosion current density icorr is 1.29×10-7 A/cm2,approximately one magnitude order lower than that of nc Ni. With the similar passive film breakdown potential, nanocomposite exhibits a lower passivation potential Ep of 10 mV and a much lower passive current density ip of1.79×10-6 A/cm2, about 1/7 that for nc Ni. According to the Mott-Schottky analysis together with point defect model, the passive film on the nanocomposite exhibits p-type semi-conducting behavior,similar to that on the nc Ni. The grain refinement of Ni is beneficial to the reduction of both the donor density and diffusion coefficient.

Key wordsNanocomposite    Ni-WC    corrosion    passive film    hardness
收稿日期: 2013-03-21     
基金资助:

辽宁省自然科学基金项目201202127和辽宁省高等学校杰出青年学者成长计划项目LJQ2011033资助

通讯作者: 陈吉     E-mail: jchen_Lsu@hotmail.com
作者简介: 武占文, 男, 1987年生, 硕士生

引用本文:

武占文,陈吉,朴楠,杨明川. Ni-WC纳米复合镀层的制备及钝化性能研究[J]. 金属学报, 10.3724/SP.J.1037.2013.00131.
WU Zhanwen, CHEN Ji, PIAO Nan, YANG Mingchuan. SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING. Acta Metall Sin, 2013, 49(10): 1185-1190.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00131      或      https://www.ams.org.cn/CN/Y2013/V49/I10/1185

[1] Balog M, Keckes J, Schoberl T, Galusek D, Hofer F,Krst’n J, Lences Z, Huang J L, Sajgalik P.  J Eur Ceram Soc, 2007; 27: 2145

[2] Shen G X, Chen Y C, Lin L, Lin C J, Scantlebury D.  Electrochim Acta, 2005; 50: 5083
[3] Zhang H Y, Shan G B, Liu H Z, Xing J M.  Surf Coat Technol, 2007; 201: 6917
[4] Tang W, Lu W J, Luo X, Wang B S, Zhu X B, Song W H, Yang Z R, Sun Y P.  J Magn Magn Mater,2010; 322: 2360
[5] Bai S L, Chen L Y, Hu J W, Li D Q, Luo R X, Chen A F, Chung C L.  Sens Actuators,2011; 159B: 97
[6] Zhang S S, Han K J, Cheng L.  Surf Coat Technol, 2008; 202: 2807
[7] Wu B, Xu B S, Zhang B, L$\ddot{\rm u$ Y H.  Surf Coat Technol, 2007; 201: 6933
[8] Zhang M, Lin G Q, Dong C, Kim K H.  Curr Appl Phys, 2009; 9: S174
[9] Stroumbouli M, Gyftou P, Pavlatou E A, Spyrellis N.  Surf Coat Technol, 2005; 195: 325
[10] Gyftou P, Stroumbouli M, Pavlatou E A, Asimidis P, Spyrellis N.Electrochim Acta, 2005; 50: 4544
[11] Zhou X W, Shen Y F, Gu D D.  Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[12] Ye W, Li Y, Wang F H.  Electrochim Acta, 2006; 51: 4426
[13] Zheng Z J, Gao Y, Gui Y.  Corros Sci, 2012; 54: 60
[14] Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H.  Acta Metall Sin, 2013; 49: 265
(韩啸, 陈吉, 孙成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265)
[15] Meng G Z, Shao Y W, Zhang T, Zhang Y, Wang F H.  Electrochim Acta, 2008; 53: 5923
[16] Vignal V, Oltra R, Verneau M, Coudreuse L.  Mater Sci Eng, 2001; A303: 173
[17] Oliver W C, Pharr G M.  J Mater Res, 1992; 7: 1564
[18] Wu H, Chen T, Wang Q H.  J Mater Eng, 2011; 12: 48
(吴化, 陈涛, 王庆辉. 材料工程, 2011; 12: 48)
[19] El-Sherik A M, Erb U, Palumbo G, Aust K T.  Scr Mater, 1992; 27: 1185
[20] Chen X H, Chen C S, Xiao H N, Cheng F Q, Zhang G, Yi G J.  Surf Coat Technol, 2005; 191: 351
[21] Garrett C G B, Brattain W H.  Phys Rev, 1955; 99: 376
[22] Sun F L, Meng G Z, Zhang T, Shao Y W, Wang F H, Dong C F, Li X G.Electrochim Acta, 2009; 54: 1578
[23] Liu L, Li Y, Wang F H.  Electrochim Acta, 2008; 53: 2453
[24] Macdonald D D.  J Electrochem Soc, 1992; 139: 3434
[25] Macdonald D D, Macdonald M U.  J Electrochem Soc, 1990; 137: 2395
[26] Sikora E, Sikora J, Macdonald D D.  Electrochim Acta, 1996; 41: 783
[27] Li N, Li Y, Wang S G, Wang F H.  Electrochim Acta, 2006; 52: 760
[1] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[2] 曹凤婷, 魏洁, 董俊华, 柯伟, 王铁钢, 范其香. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[9] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[10] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[11] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[12] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[13] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[14] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[15] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.