Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 614-620    DOI: 10.3724/SP.J.1037.2012.00716
  论文 本期目录 | 过刊浏览 |
不锈钢表层对空化与电化学腐蚀交互作用的纳米力学响应
张茹,沈汉杰,张雅琴,李栋梁,李彦嘉,雍兴跃
北京化工大学有机无机复合材料国家重点实验室, 北京 100029
SURFACE LAYER NANO-MECHANICAL RESPONSES TO INTERACTION BETWEEN CAVITATION AND ELECTROCHEMICAL CORROSION
ZHANG Ru, SHEN Hanjie, ZHANG Yaqin, LI Dongliang, LI Yanjia, YONG Xingyue
State Key laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029
引用本文:

张茹,沈汉杰,张雅琴,李栋梁,李彦嘉,雍兴跃. 不锈钢表层对空化与电化学腐蚀交互作用的纳米力学响应[J]. 金属学报, 2013, 49(5): 614-620.
ZHANG Ru, SHEN Hanjie, ZHANG Yaqin, LI Dongliang, LI Yanjia, YONG Xingyue. SURFACE LAYER NANO-MECHANICAL RESPONSES TO INTERACTION BETWEEN CAVITATION AND ELECTROCHEMICAL CORROSION[J]. Acta Metall Sin, 2013, 49(5): 614-620.

全文: PDF(1089 KB)  
摘要: 

采用纳米压入测试技术, 研究了阳极极化对空化作用下奥氏体不锈钢表层力学性能(纳米硬度Hnano和纳米弹性模量Enano)的影响, 并结合失重法与腐蚀形貌分析, 探讨了阳极极化对空泡腐蚀过程中协同效应机制的作用. 同时, 将表层平均纳米硬度与平均纳米弹性模量的比值定义为表层综合力学性能参数(H/E)nano. 结果表明, 在不同的阳极极化条件下, 空泡腐蚀试样表层纳米硬度、弹性模量和表层综合纳米力学参数的演化规律存在很大差异. 随着阳极极化电流增大, 表层纳米硬度和表层综合纳米力学参数逐渐减小, 表层纳米弹性模量逐渐增大. 在空化作用下, 当阳极极化处于钝化区时, 其协同效应主要为空泡磨损起作用; 当阳极极化处于钝化开始向过钝化状态转变时, 其协同效应机制为腐蚀引起的磨损过程控制; 一旦处于过钝化区, 其协同效应则主要为磨损引起的腐蚀过程控制. 奥氏体不锈钢表层纳米硬度是决定耐空泡腐蚀性能的关键因素. 在空化与电化学腐蚀的交互作用过程中, 随着电化学腐蚀增大, 腐蚀引起的磨损失重量增大, 即非Faraday失重增大, 腐蚀表面也因此呈现坑、点、沟槽状的形貌特征.

关键词 奥氏体不锈钢纳米压入技术表层纳米力学性质空化    
Abstract

Cavitation corrosion resistances of metals have a very much closed relationship with the mechanical properties of their surface layer. It is very important to investigate effects of surface layer mechanical properties on cavitation corrosion to understand synergistic mechanism. Nano-indentation technology is a sensitively power tool for measuring surface layer mechanical properties in nanometer scale. In this work, it was used to study the effects of anodic polarization on the surface layer nano-mechanical properties (nano-hardness, Hnano and nano-elastic modulus, Enano) of austenitic stainless steel under cavitation. The synergistic mechanism of cavitation corrosion caused by anodic polarization was also investigated by weight loss in conjunction with SEM. The surface layer comprehensive nano-mechanical parameter was defined as (H/E)nano. It was found that the profiles of Hnano, Enano and (H/E)nano with displacement into surface (L) are very different at different anodic polarized potentials. Hnano and (H/E)nano decrease and Enano increases with the increment of logarithm of anodic current density. When the samples under cavitation were polarized at passive region, cavitation corrosion of austenitic stainless steel is mainly controlled by erosion. However, it is mainly dominated by  corrosion-induced erosion and erosion--induced corrosion, respectively, if anodic polarized potentials were controlled at the beginning of passive to super-passive and super-passive regions. The surface layer nano-hardness is a key factor dominating cavitation corrosion resistances of metals. During the interaction of cavitation with electrochemical corrosion, mass loss of corrosion-induced erosion, which is called non-Faraday weight loss, increases as a result of electrochemical corrosion. The corresponding corroded morphologies with microgrooves, micro-holes and micro-pits were observed.

Key wordsaustenitic stainless steel    nano-indentation    surface layer nano-mechanical property    cavitation
收稿日期: 2012-12-04     
基金资助:

国家自然科学基金资助项目50871011

作者简介: 张茹, 男, 1986年生, 硕士生

[1] Kerella A K.  Eng Failure Analysis, 2011; 18: 855


[2] Barik R C, Wharton J A, Wood R J, Stokes K R.  Wear, 2009; 267: 1900

[3] Yong X Y, Hou C Y, Wu J, Ji J, Zhang Z, Wang J.  Corrosion, 2011; 67: 045003-1

[4] Kwok C T, Cheng F T, Man H C.  Mater Sci Eng, 2000; A290: 145

[5] Yong X Y, Hou C Y, Wu J, Ji J, Zhang Z, Li D L.  Corrosion, 2011; 67: 095003-1

[6] Godoy C, Mancosu R D, Machado R R, Moodenesi P J, Avelar-Bastista J C.  Tribology Int, 2009; 42: 1021

[7] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W.  Wear, 2003; 254: 713

[8] Wang Z Y, Zhu J H.  Acta Metall Sin, 2003; 39: 273

(王再友, 朱金华. 金属学报, 2003; 39: 273)

[9] Wang Z Y, Zhu J H, Wang Z Z.  Acta Metall Sin, 2007; 43: 648

(王再友, 朱金华, 王章忠. 金属学报, 2007; 43: 648)

[10] Cheng F T, Shi P, Man H C.  Mater Charact, 2004; 52: 129

[11] Kerella A.  Wear, 2011; 270: 252

[12] Kerella A K.  Surf Coat Technol, 2010; 205: 2687

[13] Kerella A.  Surf Coat Technol, 2009; 204: 263

[14] Yong X Y, Ji J, Zhang Y Q, Li D L, Zhang Z J.  J Chin Soc Corros Protect, 2011; 31: 40

(雍兴跃, 吉静, 张雅琴, 李栋梁, 张占佳. 中国腐蚀与防护学报, 2011; 31: 40)

[15] Guo H X, Lu B T, Luo J L.  Electrochem Commun, 2006; 8: 1092

[16] Guo H X, Lu B T, Luo J L.  Electrochim Acta, 2005; 51: 315

[17] Fu W T, Zheng Y Z, He X K.  Wear, 2001; 249: 788

[18] Li D L, Zou G C, Zheng G T, Yong X Y.  Chin J Mater Res, 2012; 26: 274

(李栋梁, 邹冠驰, 郑根土, 雍兴跃. 材料研究学报, 2012; 26: 274)

[19] Wang B C, Zhu J H.  Ultrason Sonochem, 2008; 15: 239

[20] Yong X Y, Liu J J, Lin Y Z.  J Chem Ind Eng (China), 2003; 54: 1713

(雍兴跃, 刘景军, 林玉珍. 化工学报, 2003; 54: 1713)

[21] Wang B C, Zhu J H.  Acta Metall Sin, 2007; 43: 813

(王宝成, 朱金华. 金属学报, 2007; 43: 813)

[22] Lavigne O, Takeda Y, Shoji T, Sakaguchi K.  Ultrason Sonochem, 2011; 18: 1287

[23] Li D L.  Master Thesis, Beijing University of Chemical Technology, 2012

(李栋梁. 北京化工大学硕士学位论文, 2012)

[24] Lopez D, Faalleriros N A, Tschiptschin A P.  Tribology Int, 2011; 44: 610

[25] Stack M M, Abdulrahman G H.  Tribology Int, 2010; 43: 1268

[26] Stack M M, James J S, Lu Q.  Wear, 2004; 256: 557
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[6] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[7] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[11] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.