Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 408-414    DOI: 10.3724/SP.J.1037.2012.00656
  论文 本期目录 | 过刊浏览 |
C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响
付波1,杨王玥1,李龙飞2,孙祖庆2
1)北京科技大学材料科学与工程学院, 北京 100083
2)北京科技大学新金属材料国家重点实验室, 北京 100083
EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL
FU Bo1, YANG Wangyue1,LI Longfei2, SUN Zuqing2
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

付波,杨王玥,李龙飞,孙祖庆. C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响[J]. 金属学报, 2013, 29(4): 408-414.
FU Bo, YANG Wangyue, LI Longfei, SUN Zuqing. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL[J]. Acta Metall Sin, 2013, 29(4): 408-414.

全文: PDF(1435 KB)  
摘要: 

通过OM显微组织观察、XRD和室温单轴拉伸实验对不同C含量(0.1%和0.2%, 质量分数)的冷轧C-Mn-Al-Si系低合金TRIP钢不同热处理工艺下所得组织及其力学行为进行了研究. 结果表明: 在相同的贝氏体区等温时间下, 与低C含量的钢相比, C含量较高的钢获得了相对较少的贝氏体和较多的马氏体, 并且表现出较高的强度和延伸率; 钢组织中较高的C含量和残余奥氏体含量使其在拥有高强度的同时具有更高的延伸率. 拉伸变形过程中应变诱导马氏体相的生成速率与增量应变硬化指数n曲线具有很好的对应关系, 体现了TRIP效应对其变形过程中加工硬化能力的决定作用.

关键词 冷轧TRIP钢C-Mn-Al-SiC含量显微组织力学性能    
Abstract

The low-alloyed transformation induced plasticity (TRIP) steels demonstrate an improved combination of strength and ductility, and have became a promising candidate for the application of automotive bodies to reduce the weight without the loss of crash-worthiness. The typical microstructure of TRIP steels consists of the ferrite matrix and a dispersion of bainite, martensite and the retained austenite. The existence of an amount of metastable retained austenite is responsible for the improved mechanical properties, resulted from the enhanced strain hardening capabilities of TRIP steels due to the strain-induced martensitic transformation during straining. The carbon content is considered as an important factor that influences the amount and stability of the retained austenite. In the present work, two cold-rolled C-Mn-Al-Si TRIP steels with different carbon contents, (0.1% and 0.2%, mass fraction) were fabricated by intercritical annealing and isothermal transformation. The microstructures and the mechanical behaviors of the used steels were investigated by OM, XRD and uniaxial tensile tests at room temperature. The results indicated that with the same isothermal transformation time at 400℃,the steels with high carbon content obtained lower fraction of bainite and larger fraction of martensite, and demonstrated higher strength and larger elongation than those of steels with low carbon content. The excellent ductility of steels with high carbon content was mainly attributed to its strong TRIP effect during deformation, resulted from the larger fraction of retained austenite as well as the higher carbon content of retained asutenite in the multiphase microstructure. The value of the product of tensile strength and total elongation, representing the combination of strength and ductility of steels, was increased linearly with the increase of the value of the product of volume fraction and carbon content of retained austenite, which could be used to characterize the TRIP effect. Variation of the formation rate of strain-induced martensite was similar to that of the incremental strain hardening exponent with strain during deformation, further proved the important role of TRIP effect in influencing the strain hardening capabilities of TRIP steels.

Key wordscold-rolled TRIP steel    C-Mn-Al-Si    carbon content    microstructure    mechanical property
收稿日期: 2012-11-02     
基金资助:

国家高技术研究发展计划项目 2007AA03Z501 和新金属材料国家重点实验室基金项目资助

作者简介: 付波, 男, 1986年生, 博士生

[1] De Cooman B C.  Curr Opin Solid State Mater Sci, 2004; 8: 285


[2] Jacques P J, Girault E, Harlet Ph, Delannay F.  ISIJ Int, 2001; 41: 1061

[3] Wang X D, Wang L, Rong Y H.  Heat Treat, 2008; 23: 8

(王晓东, 王利, 戎咏华. 热处理, 2008; 23: 8)

[4] Wei X C, Li L, Fu R Y.  J Iron Steel Res, 2001; 13: 71

(韦习成, 李麟, 符仁钰. 钢铁研究学报, 2001; 13: 71)

[5] Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J, Delannay F.  ISIJ Int, 2001; 41: 1068

[6] De Meyer M, Vanderschueren D, De Cooman B C.  ISIJ Int, 1999; 39: 813

[7] Mahieu J, Maki J, De Cooman B C, Claessens S.  Metall Mater Trans, 2002; 33A: 2573

[8] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T.  Acta Metall Sin, 2008; 44: 1292

(尹云洋, 杨王玥, 李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1292)

[9] Xu K, Liu G Q.  Trans Mater Heat Treat, 2009; 30: 68

(徐锟, 刘国权. 材料热处理学报, 2009; 30: 68)

[10] Jing C N, Liu Z X, Wang Z C, Wang M G, Kim S J.  J Univ Sci Technol Beijing, 2008; 30: 610

(景财年, 刘在学, 王作成, 王明钢, 金成俊. 北京科技大学学报, 2008; 30: 610)

[11] Li Z, Wu D, Wang J F.  J Northeast Univ (Nat Sci), 2005; 26: 452

(李壮, 吴迪, 王佳夫. 东北大学学报(自然科学版), 2005; 26: 452)

[12] Jacques P J.  Curr Opin Solid State Mater Sci, 2004; 8: 259

[13] Miller R L.  Trans ASM, 1964; 57: 892

[14] Emadoddin E, Akbarzadeh A, Daneshi G H.  Mater Charact, 2006; 57: 408

[15] Sakuma Y, Matsumura O, Akisue O.  ISIJ Int, 1991; 31: 1348

[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K.  Mater Sci Eng, 2011; A528: 4516

[17] Moat R J, Zhang S Y, Kelleher J, Mark A F, Mori T, Withers P J.  Acta Mater, 2012; 60: 6931

[18] Haidemenopoulos G N, Vasilakos A N.  Steel Res, 1996; 67: 513

[19] Bourell D L, Rizk A.  Acta Metall, 1983; 31: 609

[20] Davies R G.  Metall Trans, 1979; 10A: 1549

[21] Sachdev A K.  Acta Metall, 1983; 31: 2037

[22] Jacques P J, Furnemont Q, Mertens A, Delannay F.  Philos Mag, 2001; 81A: 1789

[23] Tsukatani I, Hashimoto S I, Inoue T.  ISIJ Int, 1991; 31: 992

[24] Olson G B, Cohen M.  Metall Trans, 1975; 6A: 791

[25] Samek L, De Moor E, Penning J, De Cooman B C.  Metall Trans, 2006; 36A: 109
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.