Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 408-414    DOI: 10.3724/SP.J.1037.2012.00656
  论文 本期目录 | 过刊浏览 |
C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响
付波1,杨王玥1,李龙飞2,孙祖庆2
1)北京科技大学材料科学与工程学院, 北京 100083
2)北京科技大学新金属材料国家重点实验室, 北京 100083
EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL
FU Bo1, YANG Wangyue1,LI Longfei2, SUN Zuqing2
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
全文: PDF(1435 KB)  
摘要: 

通过OM显微组织观察、XRD和室温单轴拉伸实验对不同C含量(0.1%和0.2%, 质量分数)的冷轧C-Mn-Al-Si系低合金TRIP钢不同热处理工艺下所得组织及其力学行为进行了研究. 结果表明: 在相同的贝氏体区等温时间下, 与低C含量的钢相比, C含量较高的钢获得了相对较少的贝氏体和较多的马氏体, 并且表现出较高的强度和延伸率; 钢组织中较高的C含量和残余奥氏体含量使其在拥有高强度的同时具有更高的延伸率. 拉伸变形过程中应变诱导马氏体相的生成速率与增量应变硬化指数n曲线具有很好的对应关系, 体现了TRIP效应对其变形过程中加工硬化能力的决定作用.

关键词 冷轧TRIP钢C-Mn-Al-SiC含量显微组织力学性能    
Abstract

The low-alloyed transformation induced plasticity (TRIP) steels demonstrate an improved combination of strength and ductility, and have became a promising candidate for the application of automotive bodies to reduce the weight without the loss of crash-worthiness. The typical microstructure of TRIP steels consists of the ferrite matrix and a dispersion of bainite, martensite and the retained austenite. The existence of an amount of metastable retained austenite is responsible for the improved mechanical properties, resulted from the enhanced strain hardening capabilities of TRIP steels due to the strain-induced martensitic transformation during straining. The carbon content is considered as an important factor that influences the amount and stability of the retained austenite. In the present work, two cold-rolled C-Mn-Al-Si TRIP steels with different carbon contents, (0.1% and 0.2%, mass fraction) were fabricated by intercritical annealing and isothermal transformation. The microstructures and the mechanical behaviors of the used steels were investigated by OM, XRD and uniaxial tensile tests at room temperature. The results indicated that with the same isothermal transformation time at 400℃,the steels with high carbon content obtained lower fraction of bainite and larger fraction of martensite, and demonstrated higher strength and larger elongation than those of steels with low carbon content. The excellent ductility of steels with high carbon content was mainly attributed to its strong TRIP effect during deformation, resulted from the larger fraction of retained austenite as well as the higher carbon content of retained asutenite in the multiphase microstructure. The value of the product of tensile strength and total elongation, representing the combination of strength and ductility of steels, was increased linearly with the increase of the value of the product of volume fraction and carbon content of retained austenite, which could be used to characterize the TRIP effect. Variation of the formation rate of strain-induced martensite was similar to that of the incremental strain hardening exponent with strain during deformation, further proved the important role of TRIP effect in influencing the strain hardening capabilities of TRIP steels.

Key wordscold-rolled TRIP steel    C-Mn-Al-Si    carbon content    microstructure    mechanical property
收稿日期: 2012-11-02     
基金资助:

国家高技术研究发展计划项目 2007AA03Z501 和新金属材料国家重点实验室基金项目资助

通讯作者: 杨王玥     E-mail: wyyang@ustb.edu.cn
作者简介: 付波, 男, 1986年生, 博士生

引用本文:

付波,杨王玥,李龙飞,孙祖庆. C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响[J]. 金属学报, 2013, 29(4): 408-414.
FU Bo, YANG Wangyue, LI Longfei, SUN Zuqing. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF COLD-ROLLED C-Mn-Al-Si TRIP STEEL. Acta Metall Sin, 2013, 29(4): 408-414.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00656      或      https://www.ams.org.cn/CN/Y2013/V29/I4/408

[1] De Cooman B C.  Curr Opin Solid State Mater Sci, 2004; 8: 285


[2] Jacques P J, Girault E, Harlet Ph, Delannay F.  ISIJ Int, 2001; 41: 1061

[3] Wang X D, Wang L, Rong Y H.  Heat Treat, 2008; 23: 8

(王晓东, 王利, 戎咏华. 热处理, 2008; 23: 8)

[4] Wei X C, Li L, Fu R Y.  J Iron Steel Res, 2001; 13: 71

(韦习成, 李麟, 符仁钰. 钢铁研究学报, 2001; 13: 71)

[5] Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J, Delannay F.  ISIJ Int, 2001; 41: 1068

[6] De Meyer M, Vanderschueren D, De Cooman B C.  ISIJ Int, 1999; 39: 813

[7] Mahieu J, Maki J, De Cooman B C, Claessens S.  Metall Mater Trans, 2002; 33A: 2573

[8] Yin Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T.  Acta Metall Sin, 2008; 44: 1292

(尹云洋, 杨王玥, 李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1292)

[9] Xu K, Liu G Q.  Trans Mater Heat Treat, 2009; 30: 68

(徐锟, 刘国权. 材料热处理学报, 2009; 30: 68)

[10] Jing C N, Liu Z X, Wang Z C, Wang M G, Kim S J.  J Univ Sci Technol Beijing, 2008; 30: 610

(景财年, 刘在学, 王作成, 王明钢, 金成俊. 北京科技大学学报, 2008; 30: 610)

[11] Li Z, Wu D, Wang J F.  J Northeast Univ (Nat Sci), 2005; 26: 452

(李壮, 吴迪, 王佳夫. 东北大学学报(自然科学版), 2005; 26: 452)

[12] Jacques P J.  Curr Opin Solid State Mater Sci, 2004; 8: 259

[13] Miller R L.  Trans ASM, 1964; 57: 892

[14] Emadoddin E, Akbarzadeh A, Daneshi G H.  Mater Charact, 2006; 57: 408

[15] Sakuma Y, Matsumura O, Akisue O.  ISIJ Int, 1991; 31: 1348

[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K.  Mater Sci Eng, 2011; A528: 4516

[17] Moat R J, Zhang S Y, Kelleher J, Mark A F, Mori T, Withers P J.  Acta Mater, 2012; 60: 6931

[18] Haidemenopoulos G N, Vasilakos A N.  Steel Res, 1996; 67: 513

[19] Bourell D L, Rizk A.  Acta Metall, 1983; 31: 609

[20] Davies R G.  Metall Trans, 1979; 10A: 1549

[21] Sachdev A K.  Acta Metall, 1983; 31: 2037

[22] Jacques P J, Furnemont Q, Mertens A, Delannay F.  Philos Mag, 2001; 81A: 1789

[23] Tsukatani I, Hashimoto S I, Inoue T.  ISIJ Int, 1991; 31: 992

[24] Olson G B, Cohen M.  Metall Trans, 1975; 6A: 791

[25] Samek L, De Moor E, Penning J, De Cooman B C.  Metall Trans, 2006; 36A: 109
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.