Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 399-407    DOI: 10.3724/SP.J.1037.2012.00745
  论文 本期目录 | 过刊浏览 |
贝氏体相变温度对含Ti和Mo低碳热轧TRIP钢的组织与力学性能影响及析出相的微观结构表征
王长军,孙新军,雍岐龙,李昭,张熹,江陆
钢铁研究总院工程用钢研究所, 北京 100081
EFFECT OF BAINITIC TRANSFORMATION TEMPERATURE ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF THE HOT ROLLED TRIP STEEL CONTAINING Ti AND Mo AND ITS PRECIPITATION CHARACTERISTICS
WANG Changjun, SUN Xinjun, YONG Qilong, LI Zhaodong, ZHANG Xi, JIANG Lu
Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

王长军,孙新军,雍岐龙,李昭,张熹,江陆. 贝氏体相变温度对含Ti和Mo低碳热轧TRIP钢的组织与力学性能影响及析出相的微观结构表征[J]. 金属学报, 2013, 29(4): 399-407.
WANG Changjun, SUN Xinjun, YONG Qilong, LI Zhaodong, ZHANG Xi, JIANG Lu. EFFECT OF BAINITIC TRANSFORMATION TEMPERATURE ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF THE HOT ROLLED TRIP STEEL CONTAINING Ti AND Mo AND ITS PRECIPITATION CHARACTERISTICS[J]. Acta Metall Sin, 2013, 29(4): 399-407.

全文: PDF(5449 KB)  
摘要: 

采用SEM与HRTEM对不同贝氏体相变温度下的热轧TRIP钢进行了显微组织观察和含Ti析出相特征分析. 结果表明:贝氏体相变温度对钢的组织形貌、残余奥氏体含量和力学性能均有较大影响, 在400 ℃贝氏体相变温度下, 钢的残余奥氏体含量和强塑积均达到最佳值, 分别为17.13%和23.87 GPa·%. HRTEM表征和分析发现, 钢中存在两类纳米级(Ti, Mo)C析出粒子: 一类为奥氏体内析出且与铁素体基体满足(100)(Ti, Mo)C//(110)α-Fe,[011](Ti, Mo)C//[111]α-Fe 位向关系; 另一类为铁素体内析出且与铁素体基体满足Baker-Nutting位向关系:(100) (Ti, Mo)C//(100)α-Fe,[011] (Ti, Mo)C//[001]α-Fe.

关键词 TRIP 钢(Ti, Mo)C残余奥氏体贝氏体相变    
Abstract

With the increasing consciousness for reducing fuel consumption and improving automobiles safety, the automotive industry is urgent to develop a new-type of steel with high strength and excellent formability. Among many high strength steels, the transformation induced plasticity (TRIP) steel may be a good candidate for automotive applications, as it drastically improves the balance between strength and ductility compared to precipitation hardened and solution hardened steels. While the tensile strength of conventional hot rolled TRIP steels are usually between 500 and 600 MPa, the TRIP steel with higher tensile strength, especially in excess of 750 MPa, is becoming increasingly important for the automotive industry. Thus, many strengthening mechanisms, such as precipitation strengthening, solution strengthening, refinement strengthening and dislocation strengthening, have been employed to improve the strength of the TRIP steel. Among them, microalloying with Nb, V and Ti, may provide effective means for further strengthening via grain refinement and precipitation strengthening. So far, many researches about the Ti--microalloyed high strength low alloy (HSLA) steel have been reported. However, the influences of alloying elements Ti and Mo on the hot rolled TRIP steel, especially the precipitation characteristics and their effects on mechanical properties, were rarely reported. Therefore, in this work the microstructure, retained austenite contents, mechanical properties and precipitation characteristics of the hot rolled TRIP steel containing Ti and Mo after bainitic transformation at different temperatures, were studied by using SEM, XRD and HRTEM. The results show that the bainitic transformation temperature has a significant effect on organizational morphology, retained austenite contents and mechanical properties of the TRIP steel. The optimal bainitic transformation temperature is 400 ℃, in which the retained austenite content and the balance of strength and ductility are 17.13\% and 23.87 GPa·%, respectively. In addition, through HRTEM analysis, it was observed that the larger (Ti, Mo)C carbides over 20 nm in size exhibited the relationship ((100)(Ti, Mo)C//(110)α- Fe,[011](Ti, Mo)C//[111]α- Fe) with ferrite matrix, and the smaller (Ti, Mo)C carbides less than 5 nm in size satisfied the Baker-Nutting orientation relationship: (100)(Ti, Mo)C//(100)α- Fe ,[011](Ti, Mo)C//[001]α- Fe.

Key wordsTRIP steel    (Ti, Mo)C    retained austenite    bainitic transformation
收稿日期: 2012-12-18     
基金资助:

国家重点基础研究发展计划资助项目2010CB630805

作者简介: 王长军, 男, 1984年生, 博士生

[1] Bouquerel J, Verbeken K, De Cooman B C.  Acta Mater, 2006; 54: 1443


[2] Scott C P, Drillet J.  Scr Mater, 2007; 56: 489

[3] Jun H J, Park S H, Choi S D, Park C G.  Mater Sci Eng, 2004; A379: 204

[4] Pereloma E V, Timokhina I B, Hodgson P D.  Mater Sci Eng, 1999; A273--275: 448

[5] Jacques P J, Furnemont Q, Lani F, Pardoen T, Delannay F.  Acta Mater, 2007; 55: 3681

[6] Lani F, Furnemont Q, Rompaey T V, Delannay F, Jacques P J, Pardoen T.  Acta Mater, 2007; 55: 3695

[7] Zaefferer S, Ohlert J, Bleck W.  Acta Mater, 2004; 52: 2765

[8] Dan W J, Li S H, Zhang W G, Lin Z Q.  Mater Des, 2008; 29: 604

[9] Santos D B, Barbosa R, Oliveira P P, Pereloma E V.  ISIJ Int, 2009; 49: 1592

[10] Ahn T H, Oh C S, Kim D H, Oh K H, Bei H, George E P, Hana H N.  Scr Mater, 2010; 63: 540

[11] Quidort D, Brechet Y J M.  Acta Mater, 2001; 49: 4161

[12] Lee H, Koh H J, Seo C H, Kim N J.  Scr Mater, 2008; 59: 83

[13] Zhang M, Li L, Fu R Y, Krizan D, Cooman B C.  Mater Sci Eng, 2006; A438--440: 296

[14] Saikaly W, Bano X, Issartel C, Rigaut G, Charrin L, Chara\"{\i A.  Metall Mater Trans, 2001; 32A: 1939

[15] Kammouni A, Saikaly W, Dumont M, Marteau C, Bano X, Chara\"{\i A.  Mater Sci Eng, 2009; A518: 89

[16] Timokhina I B, Hodgson P D, Pereloma E V.  Metall Mater Trans, 2004; 35A: 2331

[17] Pereloma E V, Russell K F, Miller M K, Timokhina I B.  Scr Mater, 2008; 58: 1078

[18] Pereloma E V, Timokhina I B, Miller M K, Hodgson P D.  Acta Mater, 2007; 55: 2587

[19] Lou Y Z, Liu D L, Mao X P, Bo M Z.  Iron Steel, 2010; 45: 70

(娄艳芝, 柳得橹, 毛新平, 柏明卓. 钢铁, 2010; 45: 70)

[20] Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X.  Acta Metall Sin, 2011; 47: 1541

(王长军, 雍岐龙, 孙新军, 毛新平, 李昭东, 雍兮. 金属学报, 2011; 47: 1541)

[21] Wang Z Q, Mao X P, Yang Z G, Sun X J, Yong Q L, Li Z D, Weng Y Q.  Mater Sci Eng, 2011; A529: 459

[22] Nagata M T, Speer J G, Matlock D K.  Metall Mater Trans, 2002; 33A: 3099

[23] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 19

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 19)

[24] Hashimoto S, Ikeda S, Sugimoto K I, Miyake S.  ISIJ Int, 2004; 44: 1590

[25] Yi Y Y, Yang W Y, Li L F, Sun Z Q, Wang X T.  Acta Metall Sin, 2008; 44: 1292

(尹云洋, 杨王玥, 李龙飞, 孙祖庆, 王西涛. 金属学报, 2008; 44: 1292)

[26] Gladman T, Holmes B, McIvor I D.  Effect of Second Phase Particles on the Mechanical Properties of Steels. London: Iron and Steel Institute, 1971: 68

[27] Taran Y N, Novik V I.  Met Sci Heat Treat, 1971; 13: 818

[28] Tirumalasetty G K, Fang C M, Xu Q, Jansen J, Sietsma J, Huis M A, Zandbergen H W.Acta Mater, 2012; 60: 7160

[29] Gladman T.  Mater Sci Technol, 1999; 15: 30

[30] Ashby M F.  Philos Mag, 1970; 21: 399

[31] Ashby M F.  Strengthening Methods in Crystals. London: Applied Science Publishers Ltd, 1971: 137
[1] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[2] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[3] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[4] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[5] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[6] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[7] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[8] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[9] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[10] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[11] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[12] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[13] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[14] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.
[15] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.