Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 167-174    DOI: 10.3724/SP.J.1037.2012.00545
  论文 本期目录 | 过刊浏览 |
高强度低碳贝氏体钢拉伸断口分离现象及机理研究
李秀程, 谢振家, 王学林, 王学敏, 尚成嘉
北京科技大学材料科学与工程学院, 北京 100083
SPLIT FRACTURE PHENOMENON AND MECHANISM IN TENSILE TESTS OF HIGH STRENGTH LOW CARBON BAINITIC STEEL
LI Xiucheng, XIE Zhenjia, WANG Xuelin, WANG Xuemin, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 高强度低碳贝氏体钢拉伸断口分离现象及机理研究[J]. 金属学报, 2013, 49(2): 167-174.
LI Xiucheng, XIE Zhenjia, WANG Xuelin, WANG Xuemin, SHANG Chengjia. SPLIT FRACTURE PHENOMENON AND MECHANISM IN TENSILE TESTS OF HIGH STRENGTH LOW CARBON BAINITIC STEEL[J]. Acta Metall Sin, 2013, 49(2): 167-174.

全文: PDF(3166 KB)  
摘要: 

针对拉伸断口分离问题, 对热轧高强度低碳贝氏体钢进行了纵向常规拉伸实验和三主轴方向短试样拉伸实验. 结果表明: 在纵向和横向取样的拉伸实验中均发生了断口分离现象, 分离面均垂直于厚度方向, 即平行于轧面. 通过对断裂试样分离裂纹的SEM观察发现, 分离面具有明显的低塑性解理断裂特征.利用三主轴方向短试样拉伸实验证明了原始钢板在纵向、横向和厚度方向上具有相似的强度和塑性性能.通过有限元模拟的方法, 对颈缩过程中侧向拉伸应力的水平进行了估算, 发现即使在颈缩程度非常严重时,侧向拉应力仍远小于主拉伸应力. 由此提出了拉伸过程中沿厚度方向由塑性到脆性的转变机制, 并进一步揭示了断口分离并非意味着钢板沿厚度方向存在性能差异, 而是由于贝氏体自身特有的力学性能导致的,是经严重的拉伸塑性形变后织构状态演变、晶界重分布以及三向应力状态出现综合影响的结果.

关键词 断口分离贝氏体塑性织构晶界    
Abstract

Split fracture phenomenon in tensile tests of a high strength low carbon bainitic steel plate was investigated. Regular tensile tests in the longitudinal direction and short bar tensile tests in three principal axis directions were performed. The results showed that split fracture always occurred when the tensile direction was longitudinal or transverse. The splitting surface was almost parallel to the direction of thickness. According to SEM observation of splitting crack, it was found that the ‘split’ had features of cleavage fracture. Meanwhile, the original steel plate was experimentally proved to have similar strength and ductility in the longitudinal direction, the transverse direction and the direction of thickness. Based on a finite element analysis simulation, the lateral tensile stress within the necked zone was calculated to be much lower than the principle tensile stress. Thus, a mechanism transition from ductile to brittle during the tension process was proposed. Moreover, it was revealed that the split fracture is not definitely the result of lower performance along the direction of thickness, but it is caused by the comprehensive influence of texture evolution, the redistribution of grain boundaries and the state of three dimensional stresses with large tensile plastic deformation, which can be considered as the characteristic of mechanical property of bainitic steel.

 
Key wordssplit fracture    bainite    ductility    texture, grain boundary
收稿日期: 2012-09-14     
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

作者简介: 李秀程, 男, 1983年生, 博士生

[1] Shang C J, Wang X M, Zhou Z J, Liang X, Miao C L, He X L. Acta Metall Sin, 2008; 44: 287


(尚成嘉, 王学敏, 周召槿, 梁鑫, 缪成亮, 贺信莱. 金属学报, 2008; 44: 287)

[2] Morris J W, Guo Z, Krenn C R, Kim Y H. ISIJ Int, 2001; 41: 599

[3] Morris J W, Lee C S, Guo Z. ISIJ Int, 2003; 43: 410

[4] Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2003; 39: 1019

(尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)

[5] Weng Y Q, Yang C F, Shang C J. Iron Steel, 2011; 46(9): 1

(翁宇庆, 杨才福, 尚成嘉. 钢铁, 2011; 46(9): 1)

[6] Nie Y, Shang C J, You Y, Li X C, Cao J P, He X L. J Iron Steel Res Int, 2010; 7: 63

[7] Bramfitt B L, Marder A R. Metall Trans, 1977; 8A: 1263

[8] Baldi G, Buzzichelli G. Met Sci, 1978; 10: 459

[9] Yan W, Sha W, Zhu L, Wang W, Shan Y Y, Yang K. Metall Mater Trans, 2010; 41A: 159

[10] Han J, Gao L. Wide Heavy Plate, 2006; 12(1): 30

(韩炯, 高亮. 宽厚板, 2006; 12(1): 30)

[11] Xiong Q R, Feng Y R, Huo C Y, Li W W. Mater Mech Eng, 2005; 29(12): 21

(熊庆人, 冯耀荣, 霍春勇, 李为卫. 机械工程材料, 2005; 29(12): 21)

[12] Wang Z Y, Yue K X. Wide Heavy Plate, 2009; 15(3): 11

(王智轶, 乐可襄. 宽厚板, 2009; 15(3): 11)

[13] Yang M, Chao Y J, Li X D, Tan J Z. Mater Sci Eng, 2008; A497: 451

[14] Yang M, Chao Y J, Li X D, Immel D, Tan J Z. Mater Sci Eng, 2008; A497: 462

[15] McEvily A J, Bush R H. Trans ASM, 1962; 55: 654

[16] Mao W M, Yang P, Chen L. Analysis Principle and Detection Technique of Material Texture.

Beijing: Metallurgy Industry Press, 2008: 21

(毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术. 北京: 冶金工业出版社, 2008: 21)

[17] Yang S W, Shang C J, Wang X M, He X L. Acta Metall Sin, 2003; 39: 579

(杨善武, 尚成嘉, 王学敏, 贺信莱. 金属学报, 2003; 39: 579)

[18] Tsuji N, Ueji R, Minamino Y, Saito Y. Scr Mater, 2002; 46: 305

[19] Kimura Y, Inoue T, Yin F, Tsuzaki K. Science, 2008; 320: 1057

[20] Inoue T, Kimura Y, Ochiai S. Scr Mater, 2011; 65: 552

[21] Jablokov V, Goto D M, Koss D A, McKirgan J B. Mater Sci Eng, 2001; A302: 197

[22] Bandstra J P, Koss D A. Mater Sci Eng, 2001; A319--321: 490

[23] Guo Z, Lee C S, Morris J W. Acta Mater, 2004; 52: 5511

[24] Lambert-Perlade A, Gourgues A F, Pineau A. Acta Mater, 2004; 52: 2337

[25] Miyamoto G, Takayama N, Furuhara T. Scr Mater, 2009; 60: 1113

[26] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279

[27] You Y, Shang C J, Chen L, Subramanian S. Mater Sci Eng, 2012; A546: 111

[28] You Y, Shang C J, Chen L, Subramanian S. Mater Des, 2013; 43: 485

[29] Zhou W, Loh N L. Scr Mater, 1996; 34: 633

[30] Zheng L, Gao S. In: The Development of High Performance Pipeline Steel in China. Beijing: Petroleum Storage & Transformation Committee of China Petroleum Society, 2008: 95

(郑磊, 高珊. 北京管线钢国际研讨会论文集. 北京: 中国石油学会石油储运委员会, 2008: 95)

[31] Li H L, Ji L K. World Iron Steel, 2009; (1): 56

(李鹤林, 吉玲康. 世界钢铁, 2009; (1): 56)

[32] Gao H L. Welded Pipe Tube, 2010; 10(33): 5

(高惠临. 焊管, 2010; 10(33): 5)
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[9] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[10] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[11] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[15] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.