Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 159-166    DOI: 10.3724/SP.J.1037.2012.00515
  论文 本期目录 | 过刊浏览 |
应变速率对DP780钢动态拉伸变形行为的影响
董丹阳1),刘杨2),王磊2),苏亮进1)
1) 东北大学理学院, 沈阳 110819
2) 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL
DONG Danyang1), LIU Yang2), WANG Lei2), SU Liangjin1)
1) College of Science, Northeastern University, Shenyang 110819
2) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
引用本文:

董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
DONG Danyang, LIU Yang, WANG Lei, SU Liangjin. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL[J]. Acta Metall Sin, 2013, 49(2): 159-166.

全文: PDF(5553 KB)  
摘要: 

利用电液伺服高速试验机对DP780钢进行不同应变速率下的拉伸变形, 结合SEM和TEM等手段, 研究了应变速率对DP780钢拉伸性能及变形行为的影响规律及机制. 结果表明, 在较低应变速率(<100 s-1)条件下, 随应变速率增加, DP780钢的强度、塑性等力学性能均未见显著变化. 当应变速率超过101 s-1后, DP780钢的强度和应变硬化指数n明显提高; 塑性在3~101-5~102 s-1范围内出现大幅度增加的现象. 高应变速率的变形过程中, 铁素体基体中位错运动速度加快, 导致“近程阻力”增大, 使DP780钢的变形抗力随应变速率的增加而增大.在应变速率达到3~101 s-1之后, 铁素体中可动位错数量的大幅度提高, 是DP780钢均匀伸长率和断后伸长率在3~101-5~102 s-1范围内得以明显增加的主要原因. DP780钢中的铁素体/马氏体界面是塑性变形过程中位错塞积、微裂纹形核及扩展的主要位置, 而随应变速率的增加, 铁素体基体中的形变强化程度增大, 可降低铁素体基体与铁素体/马氏体界面之间塑性应变能差异, 延缓铁素体/马氏体界面处微裂纹的形成和扩展, 一定程度上提高了DP780钢非均匀塑性变形能力.

关键词 双相钢动态载荷应变速率变形行为    
Abstract

Tensile properties and deformation behavior of DP780 steel were studied using servo-hydraulic high-speed material testing machine, SEM and TEM. The effects of strain rate and the mechanism were investigated. The results showed that the strength and ductility of DP780 steel remained almost unchanged as the strain rate increased at strain rates lower than 100 s-1. When the strain rate was over 101 s-1, the strength and the strain-hardening coefficient increased remarkably. Ductility of DP780 steel increased significantly at the strain rates ranging from 3~101 to 5~102 s-1. The deformation resistance increased with increasing the strain rate due to the stronger short range resistance induced by the acceleration of dislocation motion in the ferrite matrix. Increasing strain rate up to 3~101 s-1 resulted in a considerable increase of the amount of mobile dislocation, which was the main reason for the increasing uniform elongation and fracture elongation of DP780 steel at the strain rate ranging from 3~101 to 5~102 s-1. Interface of ferrite-martensite in DP780 steel was the main location for pile-up of dislocation, crack initiation and propagation. The ability of inhomogeneous plastic deformation of DP780 steel increased due to the decreasing plastic strain energy difference between the ferrite matrix and ferrite-martensite interface and the consequent delaying initiation and propagation of microvoids at ferrite-martensite interface induced by the increasing work hardening degree of ferrite matrix with the increasing strain rate.

Key wordsdual phase steel    dynamic load    strain rate    deformation behavior
收稿日期: 2012-09-04     
基金资助:

国家自然科学基金项目51101029, 国家教育部博士点专项基金项目20110042120025, 中央高校基本科研业务费专项资金项目

作者简介: 董丹阳, 女, 1979年生, 讲师, 博士

[1] Curtze S, Kuokkala V T, Hokka M, Peura P. Mater Sci Eng, 2009; A507: 124


[2] Huh H, Lim J H, Park S H. Int J Auto Tech-Kor, 2009; 10(2): 195

[3] Khan A S, Baig M, Choi S H, Yang H S, Sun X. Int J Plast, 2012; 30-31: 1

[4] Ma M T, Yi H L, Lu H Z, Wan X M. Eng Sci, 2009; 11(9): 20

(马鸣图, 易红亮, 路洪洲, 万鑫铭. 中国工程科学, 2009; 11(9): 20)

[5] Maggi S, Murgia M. Weld Int, 2008; 22: 610

[6] Reisgen U, Schleser M, Mokrov O, Ahmed E. J Mater Process Technol, 2010; 210: 2188

[7] Yu H D, Guo Y J, Lai X M. Mater Des, 2009; 30: 2501

[8] Wang H Y, Chen J Y. Lightweight Structure of Autobody and Lightweight Material.

Beijing: Peking University Press, 2009: 20

(王宏雁, 陈军毅. 汽车车身轻量化结构与轻质材料. 北京: 北京大学出版社, 2009: 20)

[9] Singh N K, Cadoni E, Singha M K, Gupta N K. Mater Des, 2011; 32: 5091

[10] Wei X C, Fu R Y, Li L. Mater Sci Eng, 2007; A465: 260

[11] Oliver S, Jones T B, Fourlaris G. Mater Charact, 2007; 58: 390

[12] Boyce B L, Dilmore M F. Int J Impact Eng, 2009; 36: 263

[13] Huh H, Kim S B, Song J H, Lim J H. Int J Mech Sci, 2008; 50: 918

[14] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541

[15] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511

[16] Odeshi A G, Al-ameeri S, Bassim M N. J Mater Process Technol, 2005; 162-163: 385

[17] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565

[18] Ludwik P. Physics, 1909; 10Z: 411

[19] Hollomon J H. Trans ASM, 1944; 32: 123

[20] Plumbridge W J. J Mater Sci, 1996; 31: 2501

[21] Castany P, Pettinari-Sturmel F, Crestou J, Douin J, Coujou A. Acta Mater, 2007; 55: 6284

[22] Walgraef D. Mater Sci Eng, 2010; A322: 167

[23] Johnston W G, Gilman J J. J Appl Phys, 1959; 30: 129

[24] Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, Lu Z J.

 Dynamic Behavior of Materials. Beijing: National Defense Industry Press, 2006: 225

(Meyers M A著, 张庆明, 刘彦, 黄风雷, 吕中杰译. 材料的动力学行为. 北京: 国防工业出版社, 2006: 225)

[25] Rajeev K, Sia N N. Metall Mater Trans, 2000; 31A: 815

[26] Liu Y, Wang L, He S S, Feng F, Lu X D, Zhang B J. Acta Metall Sin, 2012; 48: 49

(刘杨, 王磊, 何思斯, 冯飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)

[27] Liu J T, Wang Z G, Shang J K. Acta Metall Sin, 2008; 44: 1409

(刘江涛, 王中光, 尚建库. 金属学报, 2008; 44: 1409)

[28] Liu Z L, You X C, Zhuang Z. Int J Solids Struct, 2008; 45: 3674

[29] Livingston J D, Chalmers B. Acta Mater, 1957; 5: 322

[30] Rajeev K, Sia N N. Mech Mater, 1998; 27(1): 1

[31] Tang C G, Zhu J H, Zhou H J. Chin J Mater Res, 1996; 10: 19

(唐长国, 朱金华, 周惠久. 材料研究学报, 1996; 10: 19)

[32] Rusinek A, Klepaczko J R. Mater Des, 2009; 30(1): 35
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[6] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[7] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[9] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[11] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[12] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[13] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[14] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[15] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.