quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement,"/> 经新型Q-P-T工艺处理后Q235钢的组织与性能
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 35-42    DOI: 10.3724/SP.J.1037.2012.00351
  论文 本期目录 | 过刊浏览 |
经新型Q-P-T工艺处理后Q235钢的组织与性能
贾晓帅1,左训伟2,陈乃录1,黄坚1,唐新华 1,戎咏华1
1.上海交通大学材料科学与工程学院, 上海 200240
2.上海交通大学机械与动力工程学院, 上海 200240
MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS
JIA Xiaoshuai1, ZUO Xunwei2, CHEN Nailu1, HUANG Jian1, TANG Xinhua1, RONG Yonghua1
1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

贾晓帅,左训伟,陈乃录,黄坚,唐新华,戎咏华. 经新型Q-P-T工艺处理后Q235钢的组织与性能[J]. 金属学报, 2013, 49(1): 35-42.
JIA Xiaoshuai, ZUO Xunwei, CHEN Nailu, HUANG Jian, TANG Xinhua, RONG Yonghua. MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS[J]. Acta Metall Sin, 2013, 49(1): 35-42.

全文: PDF(1163 KB)  
摘要: 

研究了最低屈服强度为235 MPa的Q235钢经新型淬火-分配-回火(Q-P-T)工艺处理后的力学性能和焊接性能. 结果表明, 经Q-P-T处理后的Q235钢(QPT235钢)强度得到了大幅度的提升: 屈服强度和抗拉强度分别达到435和 615 MPa. 采用相同焊料和焊接工艺, QPT235钢焊接接头的力学性能比Q235钢显著提高, 前者的抗拉强度约为532 MPa, 延伸率约为16.7%, 而后者的抗拉强度约为414 MPa,延伸率约为12.4%. 显微组织观察揭示了QPT235钢性能改善的原因: QPT235钢焊接热影响区中铁素体晶粒和珠光体层片显著细化, 并避免了魏氏组织的大量出现; 在QPT235钢的母材和热影响区中均存在硬相马氏体、贝氏体和软相残留奥氏体的复合组织, 取代了Q235钢中部分的铁素体和珠光体.

关键词 淬火-分配-回火(Q-P-T)工艺力学性能焊接接头微观组织组织细化    
Abstract

This paper presents the mechanical properties and welding properties of Q235 steel with minimum yield strength of 235 MPa treated by a novel quenching-partitioning-tempering (Q-P-T) process.The experiments indicate that the strengths of Q-P-T treated Q235 steel (briefly called QPT235 steel) markedly raise compared with Q235 steel, and its yield strength and tensile strength are 435 and 615 MPa, respectively. In addition, the mechanical properties of the welding joint of QPT235 steel are markedly improved compared with Q235 steel when the same welding solder and process are performed for the steel with the two treatments, and the tensile strength and elongation of the former are about 532 MPa and 16.71%, respectively, while those of the latter are about 414 MPa and 12.4%. The microstructural characterization reveals two main factors resulting in the mechanical properties of QPT235 steel superior to those of Q235 steel: the grains of ferrite and interlamellar spacing of pearlite are both refined in the welding heat affected zone (HAZ), and a lot of widmanstatten structures in the welding joint of Q235 steel is avoided for QPT235 steel; there is a mixed microstructure of hard phases of martensite and bainite as well as remained austenite as soft phase in both base metal and HAZ, which replace parts of ferrite and pearlite in Q235 steel.

 
Key wordsquenching-partitioning-tempering (Q-P-T) process')" href="#">
收稿日期: 2012-06-13     
基金资助:

国家自然科学基金重点资助项目51031001

作者简介: 贾晓帅, 男, 1985年生, 博士生

 


[1] Xu Z Y. In: Xue Q J ed., The Perspective of Chemical Industry, Metallurgy and Materials,Beijing: Chemical Industry Publishing House, 2007: 403

(徐祖耀. 见: 薛群基主编, 中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告会议论文集,北京: 化学与工业出版社, 2007: 403)

[2] Xu Z Y. Heat Treat, 2008; 23(2): 1

(徐祖耀. 热处理, 2008; 23(2): 1)

[3] Shang C J, Hu L J, Yang S W, Wang X M, Zhao Y T, He X L. Acta Metall Sin, 2005; 41: 471

(尚成嘉, 胡良均, 杨善武, 王学敏, 赵运堂, 贺信莱. 金属学报, 2005; 41: 471)

[4] Liu D S, Cheng B G, Chen Y Y. Acta Metall Sin, 2012; 48: 334

(刘东升, 程丙贵, 陈圆圆. 金属学报, 2012; 48: 334)

[5] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629

(齐俊杰, 杨王玥, 孙祖庆. 金属学报, 2002; 38: 629)

[6] Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels,

Korea: The Korean Institute of Metals and Materials, 2006: 774

[7] Mileiko S T, Speer J G. J Mater Sci, 1969; 4: 974

[8] Speer J G, Matlock D K, Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2661

[9] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive

Applications, Warrendale: Association for Iron-Steel Technology, 2004: 11

[10] Sugimoto K, Kobayshi M, Hashimoto S Y. Metall Trans, 1992; 23: 2085

[11] Speer J G, Assuncao F C R, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417

[12] Hsu T Y. Mater Sci Forum, 2007; 561: 2283

[13] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261

[14] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报, 2011; 47: 489)

[15] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111

[16] Chen N L, Rong Y H. Chin Pat, 10562008.9, 2010

(陈乃录, 戎咏华. 中国专利, 10562008.9, 2010)

[17] Zhou S, Zhang L, Chen N L, Gu J F, Rong Y H. ISIJ Int, 2011; 51: 1688

[18] Liu H P, Lu X W, Jin X J. Mater Des, 2011; 32: 2269

[19] Wang C L. Metal Fracture Analysis. Harbin: Harbin University Press, 1998: 4

(王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 4)

[20] Peng Y, Wang A H, Xiao H J, Tian Z L. Acta Metall Sin, 2012; 48: 1281

(彭云, 王爱华, 肖红军, 田志凌. 金属学报, 2012; 48: 1281)

[21] Zhao L, Zhang X D, Chen W Z. Acta Metall Sin, 2005; 41: 392

(赵琳, 张旭东, 陈武柱. 金属学报, 2005; 41: 392)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.