Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 789-796    DOI: 10.3724/SP.J.1037.2011.00717
  论文 本期目录 | 过刊浏览 |
利用APT对RPV模拟钢中界面上原子偏聚特征的研究
徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安
1) 上海大学材料研究所, 上海 200072
2) 上海大学微结构重点实验室, 上海 200444
SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT
XU Gang, CAI Linling, FENG Liu,  ZHOU Bangxin, LIU Wenqing, WANG Junan
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
引用本文:

徐刚 蔡琳玲 冯柳 周邦新 刘文庆 王均安. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报, 2012, 48(7): 789-796.
, , , , , . SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT[J]. Acta Metall Sin, 2012, 48(7): 789-796.

全文: PDF(3189 KB)  
摘要: 核反应堆压力容器(RPV)模拟钢样品经过660 ℃调质处理和370 ℃时效3000 h后, 用原子探针层析法研究了晶界和相界面上原子偏聚的特征. 结果表明, Ni, Mn, Si, C, P和Mo在晶界处均有不同程度的偏聚, 偏聚倾向由强到弱依次为: C, P, Mo, Si, Mn和Ni. Cu在晶界处会出现贫化现象. Si在晶界上的偏聚程度与晶界的特性有关. 在这几种元素中, C在晶界上偏聚的宽度最大, 如以成分分布图中浓度峰的半高宽来比较, C的偏聚宽度是Mn, Ni和Mo的1.5倍. 在富Cu相与 α-Fe的相界面处, Ni和Mn有明显的偏聚, 而C, P, Mo和Si倾向偏聚在相界面的α-Fe一侧, 且偏聚的程度比晶界处的低.
关键词 核压力容器模拟钢原子探针层析法晶界相界面偏聚    
Abstract:The segregation of impurity or solute atoms to grain boundaries as well as phase interfaces can either improve or degrade the chemical, physical and mechanical properties of alloys. This phenomenon has been studied widely for iron based alloys, and the analysis method by an atom probe tomography (APT) is a powerful tool for better understanding this problem. The resulting composition changes of grain boundaries and phase interfaces, as well as the precipitation of Cu-rich nanophases, are frequently associated with the phenomenon of embrittlement in ferritic reactor pressure vessel (RPV) steels. The present work was carried out to study the segregation of impurity or solute atoms to grain boundaries as well as phase interfaces in a RPV model steel with higher content of Cu (0.53%, atomic fraction) than commercially available one. The RPV model steel was prepared by vacuum induction melting. The specimens were further heat treated by water quenching at 880 ℃ for 30 min and tempering at 660 ℃ for 10 h, and finally aged at 370 ℃ for 3000 h. The results show that the segregation amount of Ni, Mn, Si, C, P and Mo atoms on grain boundaries are varied. The sequence of segregation tendency for different atoms from strong to weak is C, P, Mo, Si, Mn and Ni, whilst Cu atoms were clearly depleted at the grain boundaries. Si atoms also segregate to the grain boundaries, but it depends on the characteristic of the grain boundaries. The C segregation range at grain boundaries is the widest. According to the width of the composition profiles at the half intensity for different atoms at the grain boundaries, the segregation range of C atoms is 1.5 times wider than that of Mn, Ni and Mo atoms. Furthermore, Ni and Mn atoms evidently segregate to the interfaces between the Cu-rich phase and the α-Fe matrix, while C, P, Mo, Si atoms prefer to segregate towards the α-Fe matrix near the interfaces, but their segregation amount at the interfaces of Cu-rich phase and the α-Fe matrix is less than that at the grain boundaries.
Key wordsreactor pressure vessel model steel    atom probe tomograghy    grain boundary    phase boundary    segregation
收稿日期: 2011-11-17     
ZTFLH: 

TL341

 
基金资助:

国家重点基础研究发展计划项目2011CB610503, 国家自然科学基金项目50931003和上海市重点学科建设项目S30107资助

作者简介: 徐刚, 男, 1978年生, 博士生
[1] Takaki S, Fujioka M, Aihara S, Nagataki Y, Yamashita T, Sano N, Adachi Y, Nomura M, Yaguchi H. Mater Trans, 2004; 45: 2239

[2] Garc´?a–Mazar´?o M, Lancha A M, Hern´andez–Mayoral M. J Nucl Mater, 2007; 360: 293

[3] Laha K, Kyono J, Kishimoto S, Shinya N. Scr Mater, 2005; 52: 675

[4] Bowen P, Hippsley C A, Knott J F. Acta Metall, 1984; 32: 637

[5] Bulloch J H. Int J Pres Ves Pip, 1988; 33: 197

[6] Wang K, Xu T D, Shao C, Yang C. J Iron Steel Res Int, 2011; 18: 61

[7] Wei W, Grabke H J. Corros Sci, 1986; 26: 223

[8] Atrens A, Wang J Q, Stiller K, Andren H O. Corros Sci, 2006; 48: 79

[9] Heo N H, Jung Y C, Lee J K, Kim K T. Scr Mater, 2008; 59: 1200

[10] Lemarchand D, Cadel E, Chambreland S, Blavette D. Philos Mag, 2002; 82A: 1651

[11] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073

[12] Wu J, Song S H, Weng L Q, Xi T H, Yuan Z X. Mater Charact, 2008; 59: 261

[13] Khalid F A. Scr Mater, 2001; 44: 797

[14] Hudson D, Smith G D W. Scr Mater, 2009; 61: 411

[15] Sha G, Yao L, Liao X Z, Ringer S P, Duan Z C, Langdon T G. Ultramicroscopy, 2011; 111: 500

[16] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[17] Etienne A, Radiguet B, Cunningham N J, Odette G R, Valiev R, Pareige P. Ultramicroscopy, 2011; 111: 659

[18] Li H, Xia S, Zhou B X, Liu W Q. Mater Charact, 2012; 66: 68

[19] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852

[20] Bischler P J E, Wild R K. In: Gelles D S, Nanstad R K, Kumar A S, Little E A eds., Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270, West Conshohocken, PA: American Society for Testing and Materials, 1996: 260

[21] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Kliwer Academic/Plenum Publishers, 2000: 25

[22] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍其龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[23] Hornbogen E, Glenn R C. Trans Metall Soc AIME, 1960; 218: 1064

[24] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 7: 905

(徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超. 金属学报, 2011; 47: 905)

[25] Vurpillot F, Cerezo A, Blavette D, Larson D J. Microsc Microanal, 2004; 10: 384

[26] Blavette D, Duval P, Letellier L, Guttmann M. Acta Mater, 1996; 44: 4995

[27] Faulkner R G, Jones R B, Zheng L, Flewett P E J. Philos Mag, 2005; 85: 2065

[28] Suzuki S, Obata M, Abiko K, Kimura H. Scr Metall, 1983; 17: 1325

[29] Cerezo A, Clifton P H, Lozano–Perez S, Panayi P, Sha G, Smith G D W. Microsc Microanal, 2007; 13: 408

[30] Jiao Z, Was G S. Acta Mater, 2011; 59: 4467

[31] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

(楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报, 2011; 47: 269)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[7] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[8] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[12] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[13] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[14] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[15] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.