Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1217-1226    DOI: 10.11900/0412.1961.2020.00005
  本期目录 | 过刊浏览 |
固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响
王世宏, 李健(), 柴锋, 罗小兵, 杨才福, 苏航
钢铁研究总院工程用钢研究所 北京 100081
Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy
WANG Shihong, LI Jian(), CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang
Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
Shihong WANG, Jian LI, Feng CHAI, Xiaobing LUO, Caifu YANG, Hang SU. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. Acta Metall Sin, 2020, 56(9): 1217-1226.

全文: PDF(3920 KB)   HTML
摘要: 

采用动态机械分析仪(DMA)对Fe-19Mn合金经950~1100 ℃固溶处理后的的阻尼性能进行了测试,利用OM和TEM观察了显微组织的演变,利用XRD进行了物相分析和不同类型层错几率的计算。结果表明:经固溶处理的Fe-19Mn合金的阻尼性能随振幅的增加呈近似线性增加,且振幅小于临界振幅A' (A'≈30 μm)时的阻尼性能变化符合G-L位错模型,振幅高于A'时的阻尼性能变化与微塑性变形有关。随着固溶温度的升高,Fe-19Mn合金的阻尼性能降低,其中经950 ℃固溶处理后的阻尼性能最好。在不同的振幅范围内,其阻尼性能呈现不同的变化特征:当振幅小于等于170 μm时,阻尼性能呈指数形式降低,并且与ε-马氏体中的形变层错几率的变化趋势相似,此时Fe-19Mn合金的阻尼性能主要受ε-马氏体中的形变层错边界的影响;当振幅大于170 μm时,阻尼性能呈线性降低,并且与γ/ε相界面相对长度的变化趋势相似,此时Fe-19Mn合金的阻尼性能随固溶温度的变化主要受γ/ε相界面的影响。由γ-奥氏体中的层错观察可知,γ-奥氏体中的层错边界对Fe-19Mn合金的阻尼性能随振幅的变化无明显贡献。

关键词 Fe-Mn合金阻尼性能γε相变层错几率γ/ε相界面    
Abstract

Due to the high damping capacity and excellent mechanical properties, Fe-Mn alloy is considered to be a promising high damping alloy, and suitable for constructional and vehicle metal parts application, which can enhance the fatigue property of structures and metal parts, and also improve the working and living environment. It's generally accepted at present that damping capacity of Fe-Mn alloy is influenced by the stacking fault boundaries in γ-austenite and ε-martensite, γ/ε phase boundaries and ε/ε variant boundaries; another view is that boundaries of the above damping sources are made up of partial dislocations, so the damping capacity of Fe-Mn alloy is caused by the motion of partial dislocations, and interpreted by G-L dislocation pinning model and stacking fault probabilities calculation. But there is no distinction between the probabilities of different type stacking faults. Both deformation stacking fault and growth stacking fault can be formed in γ-austenite and ε-martensite, and the change of process parameters has different influence on them, which will lead to different changes of deformation and growth stacking fault probabilities. So it's necessary to analyze whether boundaries of different stacking fault types will have different effects on damping capacity of Fe-Mn alloy. Based on that, a hot-rolled Fe-19Mn alloy is prepared and then solution treated between 950~1100 ℃. Damping capacity is measured by dynamic mechanical analyzer (DMA). The microstructure evolution is observed by OM and TEM, and XRD is used to analyze phase constitution and to measure stacking fault probabilities. The results reveal that Fe-19Mn alloy shows amplitude-dependent damping capacity which almost linearly increases with amplitude, and frequency-independent damping capacity. From G-L plot, the variation of damping capacity below the critical amplitude A' (A'≈30 μm) is interpreted by G-L model, while it's associated with micro-plastic deformation when above A'. As the increase of solution treatment temperature, the damping capacity of Fe-19Mn decreases, and possesses the best performance at 950 ℃; furthermore, it shows different characteristics in different amplitude ranges: when the amplitude is lower than 170 μm, damping capacity decreases in exponential form, which changes similarily with deformation stacking fault probability in ε-martensite, so it can be considered the boundaries of deformation stacking fault as the main damping source; when the amplitude is higher than 170 μm, damping capacity decreases linearly, which changes similarily with the relative length of γ/ε phase boundary, so it can be considered γ/ε phase boundary as the main damping source. Based on TEM observation of stacking faults in γ-austenite, it can be inferred that stacking fault boundaries in γ-austenite have no obvious contribution to the change of damping capacity of Fe-19Mn with amplitude.

Key wordsFe-Mn alloy    damping capacity    γε transformation    stacking fault probability    γ/ε interface
收稿日期: 2020-01-02     
ZTFLH:  TG135.7  
作者简介: 王世宏,男,1991年生,博士生
图1  振幅(A)和频率(f)变化对Fe-19Mn合金阻尼性能的影响
图2  固溶温度对不同振幅范围内Fe-19Mn合金阻尼性能的影响(a) equal to and below 170 μm;(b) above 170 μm
图3  不同固溶温度下的Fe-19Mn合金显微组织的OM像(a) 950 ℃;(b) 1000 ℃;(c) 1050 ℃;(d) 1100 ℃
图4  固溶温度对ε-马氏体板条尺寸和γ/ε相界面相对长度的影响
图5  奥氏体晶粒尺寸和γ→ε相变开始温度(Msγ→ε)随固溶温度的变化
图6  1100 ℃固溶处理试样的TEM像和选区电子衍射(SAED)谱
图7  γ-奥氏体中层错在双束条件下的TEM像及SAED谱
图8  950 ℃固溶处理试样的ε-马氏体中层错的双束明场像
图9  固溶态试样的XRD谱和各相含量随固溶温度的变化
图10  固溶温度对γ-奥氏体中和ε-马氏体中的层错几率的影响
图11  奥氏体晶粒尺寸对γ-奥氏体层错能(Γ)和相变驱动力(ΔGγ→ε)的影响Color online
图12  Fe-19Mn合金的G-L图Color online
[1] Jun J H, Choi C S. Change in stacking-fault energy with Mn content and its influence on the damping capacity of the austenitic phase in Fe-high Mn alloys [J]. J. Mater. Sci., 1999, 34: 3421
[2] Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
[3] Sun H Y, Giron-Palomares B, Qu W H, et al. Effects of Cr addition and cold pre-deformation on the mechanical properties, damping capacity, and corrosion behavior of Fe-17%Mn alloys [J]. J. Alloys Compd., 2019, 803: 250
[4] Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys [J]. Mater. Sci. Eng., 1999, A273-275: 538
[5] Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20 mass% Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138
[6] Jun J H, Choi C S. The influence of Mn content on microstructure and damping capacity in Fe-(17~23)%Mn alloys [J]. Mater. Sci. Eng., 1998, A252: 133
[7] Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
[8] Jun J H, Baik S H, Lee Y K, et al. The influence of aging on damping capacity of Fe-17%Mn-X%C alloys [J]. Scr. Mater., 1998, 39: 39
[9] Jee K K, Jang W Y, Baik S H, et al. Transformation behavior and its effect on damping capacity in Fe-Mn based alloys [J]. J. Phys. IV, 1995, 5: C8-385
[10] Huang S K, Liu J H, Li C A, et al. Effect of pre-deformation on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2009, 45: 937
[10] (黄姝珂, 刘建辉, 李昌安等. 预变形对Fe-Mn合金层错几率和阻尼性能的影响 [J]. 金属学报, 2009, 45: 937)
[11] Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy [J]. J. Alloys Compd., 2019, 770: 252
[12] Lee Y K, Jun J H, Choi C S. Damping capacity in Fe-Mn binary alloys [J]. ISIJ Int., 1997, 37: 1023
[13] Warren B E. X-Ray Diffraction [M]. New York: Dover Publications, 1990: 285
[14] Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204
pmid: 27877552
[15] Pramanik S, Gazder A A, Saleh A A, et al. Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel [J]. Mater. Sci. Eng., 2018, A731: 506
[16] Cohen J B, Wagner C N J. Determination of twin fault probabilities from the diffraction patterns of fcc metals and alloys [J]. J. Appl. Phys., 1962, 33: 2073
[17] Jiang B H, Qi X, Zhou W M, et al. Comment on "Influence of austenite grain size on γε martensitic transformation temperature in Fe-Mn-Si-Cr alloys" [J]. Scr. Mater., 1996, 34: 771
[18] Yang J H, Wayman C M. On secondary variants formed at intersections of ε martensite variants [J]. Acta Metall. Mater., 1992, 40: 2011
[19] Li B, Yan P F, Sui M L, et al. Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg [J]. Acta Mater., 2010, 58: 173
[20] Ma R Z, Wang S L. The γε martensitic transformation in iron-manganese alloys [J]. Trans. Met. Heat Treat., 1982, (2): 27
[20] (马如璋, 王世亮. 铁锰合金中γε马氏体相变 [J]. 金属热处理学报, 1982, (2): 27)
[21] Xu Z Y. Martensitic Transformation and Martensite [M]. 2nd Ed., Beijing: Science Press, 1999: 133
[21] (徐祖耀. 马氏体相变与马氏体 [M]. 第2版,北京: 科学出版社, 1999: 133)
[22] Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
[23] Nakano J, Jacques P J. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems [J]. Calphad, 2010, 34: 167
[24] Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans., JIM, 1993, 34: 489
[25] Jun J H, Choi C S. Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γε martensitic transformation in Fe-Mn alloy [J]. Mater. Sci. Eng., 1998, A257: 353
[26] Guo Z H, Rong Y H, Chen S P, et al. Formation mechanism of thermally induced ε-martensite in Fe-Mn-Si based shape memory alloys [J]. J. Shanghai Jiaotong Univ., 1998, 32(2): 43
[26] (郭正洪, 戎咏华, 陈世朴等. Fe-Mn-Si系形状记忆合金中热诱发ε马氏体的形成机制 [J]. 上海交通大学学报, 1998, 32(2): 43)
[27] Jun J H, Lee Y K, Choi C S. Damping mechanisms of Fe-Mn alloy with (γ+ε) dual phase structure [J]. Mater. Sci. Technol., 2000, 16: 389
doi: 10.1179/026708300101507974
[28] Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
[28] (黄姝珂, 李 宁, 文玉华等. 深冷处理和温度对Fe-Mn合金阻尼性能的影响 [J]. 金属学报, 2007, 43: 807)
[29] Fan G D, Zheng M Y, Hu X S, et al. Internal friction and microplastic deformation behavior of pure magnesium processed by equal channel angular pressing [J]. Mater. Sci. Eng., 2013, A561: 100
[30] Ma Y L, Ge T S. Dislocation damping peaks appearing within the temperature range for the direct and inverse martensitic transformations of an iron-manganese alloy [J]. Acta Phys. Sin., 1964, 20: 909
[30] (马应良, 葛庭燧. 铁锰合金在正、反马氏体型相变温度范围内出现的位错内耗峰 [J]. 物理学报, 1964, 20: 909)
doi: 10.7498/aps.20.909
[31] Yang X S, Sun S, Ruan H H, et al. Shear and shuffling accomplishing polymorphic fcc γ→hcp ε→bct α martensitic phase transformation [J]. Acta Mater., 2017, 136: 347
doi: 10.1016/j.actamat.2017.07.016
[32] Jun J H, Choi C S. Strain amplitude dependence of the damping capacity in Fe-17%Mn alloy [J]. Scr. Mater., 1998, 38: 543
doi: 10.1016/S1359-6462(97)00525-3
[33] Jee K K, Jang W Y, Baik S H, et al. Damping capacity in Fe-Mn based alloys [J]. Scr. Mater., 1997, 37: 943
doi: 10.1016/S1359-6462(97)00198-X
[34] De A K, Cabanas N, De Cooman B C. FCC-HCP transformation-related internal friction in Fe-Mn alloys [J]. Z. Metallkd., 2002, 93: 228
doi: 10.3139/146.020228
[1] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[2] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[3] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[4] 刘刚, 唐莎巍, 胡津. 预制件烧结温度对Bi(OH)3-Al18B4O33w/Al复合材料阻尼性能的影响*[J]. 金属学报, 2014, 50(3): 361-366.
[5] 刘刚 孙雅丽 胡津 周科. Bi2O3涂覆Al18B4O33晶须增强铝基复合材料的阻尼性能[J]. 金属学报, 2010, 46(8): 979-983.
[6] 刘树伟 李秀艳 闫德胜 戎利建. 时效温度及微量Zr+Si对Zn--22\%Al合金阻尼性能的影响[J]. 金属学报, 2009, 45(9): 1099-1105.
[7] 黄姝珂 刘建辉 李昌安 周丹晨 李宁 文玉华. 预变形对Fe-Mn合金层错几率和阻尼性能的影响[J]. 金属学报, 2009, 45(8): 937-942.
[8] 胡小锋 李秀艳 张波 戎利建 李依依. Nb, Ti和Cu对Fe--13Cr--2.5Mo合金阻尼与腐蚀性能的影响[J]. 金属学报, 2009, 45(6): 717-722.
[9] 肖甫 赵新青 徐惠彬 姜海昌 戎利建. (NiTi)50-0.5xNbx形状记忆合金的阻尼性能及力学性能[J]. 金属学报, 2009, 45(1): 18-24.
[10] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[11] 黄姝珂; 李宁; 文玉华; 丁胜; 滕劲; 胥永刚 . 深冷处理和温度对Fe-Mn合金阻尼性能的影响[J]. 金属学报, 2007, 43(8): 807-812 .
[12] 林仁荣; 刘芳; 曹名洲; 杨锐 . 退火及置换元素对Fe-Cr-Al基合金阻尼性能及强度的影响[J]. 金属学报, 2005, 41(9): 958-962 .
[13] 王卫国; 周邦新 . 铁磁合金中的磁弹转换[J]. 金属学报, 2000, 36(1): 81-86 .
[14] 王卫国;周邦新;郑忠民. Fe—Cr—Al—Si合金阻尼性能研究[J]. 金属学报, 1998, 34(10): 1039-1042.
[15] 程饴萱;陈继勤;方晓旻;吕卫平. CuZnAl合金的马氏体及其相变的阻尼性能[J]. 金属学报, 1991, 27(3): 56-60.