Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 194-198    DOI: 10.3724/SP.J.1037.2011.00560
  论文 本期目录 | 过刊浏览 |
磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响
罗庆洪,李春志,娄艳芝,赵振业
北京航空材料研究院, 北京 100095
GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL
LUO Qinghong, LI Chunzhi, LOU Yanzhi, ZHAO Zhenye
Beijing Institute of Aeronautical Materials, Beijing 100095
全文: PDF(748 KB)  
摘要: 本文以渗碳热处理后的M50NiL钢为研究对象, 利用Vickers硬度计、XRD, TEM, HRTEM以及旋转弯曲疲劳试验仪对普通磨削和精密磨削后试样表面变质层微观结构和硬度及试样的疲劳性能进行了研究. 结果表明: 进刀量不同的2种磨削工艺获得的试样表面粗糙度不同, 表面变质层微观结构和硬度以及试样疲劳性能差别较大. 精密磨削对试样硬度产生影响的深度较小. 普通磨削表面变质层奥氏体含量较多, 呈现明显的奥氏体“有效晶粒”现象;精密磨削表面变质层则为非常细小的变形马氏体组织, 呈现明显的纳米级 马氏体“有效晶粒”现象; “有效晶粒”之间无明显的界面, 且晶面扭转现象明显,相邻“有效晶粒”之间转动角度最大可达14°, 同时“有效晶粒”内部晶面 也存在轻微扭转现象; 精密磨削工艺试样的旋转弯曲疲劳寿命约为普通磨削的13倍.
关键词 M50NiL钢 磨削变质层 显微硬度 微观组织 疲劳性能    
Abstract:The surface hardness field, modificative layer microstructure and fatigue properties of carburized M50NiL steel after ordinary grinding and precision grinding, were studied using Vickers hardness tester, XRD, TEM, HRTEM and the rotating bending fatigue tester. The results showed that two grinding processes are different only on the amount of feed and surface roughness, but bring larger changes in the surface hardness field, modificative layer microstructure and fatigue properties. Two kinds of grinding have different effects on the hardness depth, the impact depth of precision grinding is smaller; There was more austenite on ordinary grinding surface, and the surface layer showed a clear modificative layer of austenitic"effective grain"; precision grinding surface modificative layer is very small deformation nano–martensite, but also shows a clear"effective grain"phenomenon;effective grainno obvious interface; "effective grain"turning phenomenon is apparent, adjacent "effective grain"rotation angle is up to 14?, while, there are slight turning phenomenon within the"effective grain"; rotating bending fatigue life of precision grinding increases by about 13 times of ordinary grinding sample.
Key wordsM50NiL steel    grinding modificative layer    microhardness    microstructure    fatigue property
收稿日期: 2011-09-07     
ZTFLH: 

TG115.21

 
通讯作者: 娄艳芝     E-mail: qhluo@sina.cn
Corresponding author: LUO Qinghong     E-mail: qhluo@sina.cn
作者简介: 罗庆洪, 男, 1974年生, 工程师, 博士

引用本文:

罗庆洪 李春志 娄艳芝 赵振业. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J]. 金属学报, 2012, 48(2): 194-198.
LUO Qiang-Hong, LI Chun-Zhi, LV Yan-Zhi, DIAO Zhen-Ye. GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL. Acta Metall Sin, 2012, 48(2): 194-198.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00560      或      https://www.ams.org.cn/CN/Y2012/V48/I2/194

[1] Ma S Y, Xu J H, He X C, Tan M, Li J B. Acta Metall Sin, 2003; 39: 168

(马素媛, 徐建辉, 贺笑春, 覃明, 李家宝. 金属学报, 2003; 39: 168)

[2] Yang Y Y, Fang H S, Huang W G. Tribol Int, 1996; 29: 425

[3] Gao C Q. Friction Metallography. Harbin: Harbin Institute of Technology Press, 1988: 32

(高彩桥. 摩擦金属学. 哈尔滨: 哈尔滨工业大学出版社, 1988: 32)

[4] Wang C J, Lu D Q, Wu J X. Carburizing Bearing Steel and Heat Treatment. Beijing: Ordnance Industry Press, 1989: 51

(汪传稷, 陆大启, 吴继贤. 渗碳轴承用钢及其热处理. 北京: 兵器工业出版社, 1989: 51)

[5] Fu Y F, Cui L J, L iu Y L, Yan Y J. Heavy Machin Sci Technol, 2003; 4: 37

(付云峰, 崔连进, 刘雅琳, 严衍军. 重型机械科技, 2003; 4: 37)

[6] Boehmer H J, Ebert F J, Trojahn W. Lubr Eng, 1992; 48: 28

[7] Rosado L, Jain V K, Trivedi H K. Wear, 1997; 212: 19

[8] Pearson P K, Dickinson T W. in: Hoo J J C ed., Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTM STP 987, Philadelphia, PA: American

society for testing and materials, 1988: 113

[9] Xia G Z. China Aeronautical Materials Handbook, Beijing: China Standard Press, 1988: 20

(夏恭枕. 中国航空材料手册. 北京: 中国标准出版社, 1988: 20)

[10] B¨ohmer H J. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 34

[11] Boehmer H J, Ebert F J, Trojahn W. J Soc Tribol Lubr Eng, 1992; 48: 28

[12] Braza J F, Pearson P K. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 49

[13] Fu Y Q, Gu Y W, Batchelor A W, Zhou W. Mater Sci Technol, 1998; 14: 461

[14] Harris T A, Skiller J, Spitzer R F. Tribol Trans, 1992, 35: 731

[15] Liu J D, Wang G C, Chen K M, Xu Z L, Hou D P. Met Heat Treat, 2006; 31: 57

(刘菊东, 王贵成, 陈康敏, 许志龙, 侯达盘. 金属热处理, 2006; 31: 57)
[1] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[2] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[3] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[4] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[5] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[6] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[7] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[8] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[9] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[10] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[11] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[12] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[13] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[14] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[15] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.