Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 769-776    DOI: 10.3724/SP.J.1037.2011.00441
  综述 本期目录 | 过刊浏览 |
核电站关键材料在微纳米尺度上的环境损伤行为研究------进展与趋势
韩恩厚
1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳110016
2) 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110016
RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT
HAN En--Hou
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究------进展与趋势[J]. 金属学报, 2011, 47(7): 769-776.
En-Hou HAN . RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT[J]. Acta Metall Sin, 2011, 47(7): 769-776.

全文: PDF(2328 KB)  
摘要: 分析了核电站用关键金属材料的损伤行为的研究现状, 叙述了近期的主要进展: 腐蚀电化学动力学、晶界上的优先氧化及由此导致的晶界强度降低、材料内部特殊晶界改善耐腐蚀性能、尖锐的应力腐蚀裂纹形状、纳米尺度原子团簇的形成及其对性能的影响等. 在此基础上指出, 在高温高压水中工作的核电站关键材料的环境损伤的研究趋势和主要问题包括: 材料在高温高压水中的腐蚀电化学动力学, 特别是杂质离子对腐蚀微观过程的影响; 表面膜和材料表层在微纳米尺度上的微观结构、物理性质、力学性质、化学性质和表面膜的再钝化行为, 特别是离子在表面膜和材料表层的传输过程; 微纳米尺度上材料初始加工表层、水化学参数对应力腐蚀裂纹孕育的影响, 以及穿晶应力腐蚀开裂的机理; 材料微观损伤研究结果与工程应用的结合等. 研究这些材料的环境行为需要精确控制研究状态和环境条件, 因此, 发展先进的的核电环境模拟技术和研究手段是获得核电站准确损伤行为的关键.
关键词 核电关键材料不锈钢镍基合金低合金钢锆合金腐蚀应力腐蚀开裂腐蚀疲劳流动加速腐蚀辐照损伤    
Abstract:The recent research status of materials degradation in nuclear power plant (NPP) has been analyzed. The main research progresses include: kinetics of corrosion electrochemistry in high temperature pressurised water, preferential intergranular oxidation and the degradation of grain boundary strength, special grain boundary optimized materials corrosion resistance, tight crack of stress corrosion cracking, nano-scale atom cluster formation and effects. The research trends and key problems have been proposed, such as kinetics of corrosion electrochemistry in high temperature high pressure water, especially the effect of contaminating species on micro-process of corrosion; characterization of microstructure, physical, chemical and mechanical properties of surface film and near-surface materials, repassivation behavior of passive film, especially ion diffusion micro-process in the surface film and near-surface materials; the effects of as-received surface and water chemistry on crack incubation and initiation; application of materials degradation mechanisms. In order to characterize the material environmental behavior, it is important to control the research and environment condition,  and to develop new test methods in simulated NPP environment.
Key wordskey material in nuclear power plant    stainless steel    nickel--based alloy    low alloy steel    zirconium alloy    corrosion    stress corrosion cracking    corrosion fatigue,    flow assisted corrosion    irradiation degradation
收稿日期: 2011-07-12     
基金资助:

国家重点基础研究发展计划项目2011CB610500和国家科技重大专项项目2011ZX06004-009资助

作者简介: 韩恩厚, 男, 1961出生, 研究员
[1] Macdonald D D, Scott A, Wentrcek P. J Electrochem Soc, 1979; 126: 1618

[2] Hettiarachchi S, Makela K, Song H, Macdonald D D. J Electrochem Soc, 1992; 139: L3

[3] Kriksunov L B, Macdonald D D, Millett P J. J Electrochem Soc, 1994; 141: 3002

[4] Kriksunov L B, Macdonald D D. J Electrochem Soc, 1998; 145: 4107

[5] Huang S, Daehling K, Carleso T E, Abdel-latif M, Taylor P,Wai C, Propp A. ACS Symp Ser, 1989; 406: 287

[6] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02 1 32544.8, 2005

(张丽, 韩恩厚, 柯伟, 关辉. 中国专利, ZL 02 1 32544.8, 2005)

[7] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02 2 74025.2, 2003

(张 丽, 韩恩厚, 柯 伟, 关辉. 中国实用新型专利, ZL 02 2 74025.2, 2003)

[8] Guan H, Zhang L, Han E H, Ke W. Chin Pat, ZL 02 2 74026.0, 2003

(关辉, 张丽, 韩恩厚, 柯伟. 中国实用新型专利, ZL 02 2 74026.0, 2003)

[9] Sun H, Wu X Q, Han E H. Chin Pat, CN101470093, 2009

(孙华, 吴欣强, 韩恩厚. 中国专利, CN101470093, 2009)

[10] Sun H, Wu X Q, Han E H. Chin Pat, CN101470094, 2009

(孙华, 吴欣强, 韩恩厚. 中国专利, CN101470094, 2009)

[11] Han E H, Wang J Q, Wu X Q, Ke W, Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯伟, 金属学报, 2010; 46: 1379)

[12] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565

[13] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976

[14] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[15] Kuang W J, Han E H, Wu X Q, Rao J C. Corros Sci, 2010; 52: 3654

[16] Huang J, Wu X Q, Han E H. Corros Sci, 2010; 52: 3444

[17] Asher R C, Davis D, Kirstein T B A, McCullen P A J, White J F. Corros Sci, 1970; 10: 695

[18] ChenXW, BaiXD, XueX Y. Rare Met Mater Eng, 2003; 32: 321

(陈小文, 白新德, 薛祥义. 稀有金属材料与工程, 2003; 32: 321)

[19] Sungjoon L, Eunae C, Sejin A, Hyuksang K. Electrochim Acta, 2001; 46: 2605

[20] Kazuo T, Masayoshi U, Mihoko O, Shinsuke Y. J Alloys Compds, 2006; 421: 303

[21] Masayoshi U. Kazuo T, Toru N, Shinsuke Y. J Alloys Compds, 2007; 446-447: 635

[22] Janos B, Gabor N, Robert S. Radiat Phys Chem, 2003; 67: 321

[23] Irving B A. Corros Sci, 1965; 5: 471

[24] Gibbs G B. Corros Sci, 1967; 7: 165

[25] Evans H E. Corros Sci, 1983; 23: 495

[26] Gellings P J, de Jongh M A. Corros Sci, 1967; 7: 413

[27] Artymowicz D M, Newman R C, Erlebacher J D. Philos Mag, 2009; 89: 1663

[28] Zhang Z M. Wang J Q, Han E H, Ke W. Corros Sci, 2011, doi: 10.1016/j.corsci.2011.07.012

[29] Fujii K, Fukuya K. Mater Trans, 2011; 52: 20

[30] Watanabe T. Res Mechanica, 1984; 11: 47

[31] Randle V. Acta Mater, 2004; 52: 4067

[32] Gertsman V Y, Bruemmer S M. Acta Mater, 2001; 49: 1589

[33] Arafin M A, Szpunar J A. Corros Sci, 2009; 51: 119

[34] Marrow T J, Babout L, Jivkov A P, Wood P, Engelberg D, Stevens N, Withers P J, Newman R C. J Nucl Mater, 2006; 352: 62

[35] King A, Johnson G, Engelberg D, Ludwig W, Marrow J. Science, 2008; 321: 382

[36] Kokawa H, Shimada M, Michiuchi M, Wang Z J, Sato Y S. Acta Mater, 2007; 55: 5401

[37] Kokawa H. J Mater Sci, 2005; 40: 927

[38] Hou J, Wang J Q, Ke W, Han E H. Mater Sci Eng, 2009; A518: 19

[39] Hou J, Peng Q J, Lu Z P, Shoji T, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 1137

[40] Hou J, Peng Q J, Shoji T, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 2956

[41] Xia S, Li H, Liu T G, Zhou B X. J Nucl Mater, 2011; doi: 10.1016/j.jnucmat.2011.06.017

[42] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen WJ, Wang N. Corros Sci, 2011; 53: 1880

[43] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted

[44] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2009; 51: 2761

[45] Meng F J, Han E H, Wang J Q, Zhang Z M, Ke W. Electrochim Acta, 2011; 56: 1781

[46] Bruemmer S M, Thomas L E. In: Shipilov S, Jones R, Olive J M, Rebak R, eds., Environment–Induced Cracking of Materials. Amsterdam: Elsevier B.V., 2008: 95

[47] Auger P, Pareige P, Welzel S, Van Duysen J C. J Nucl Mater, 2000; 280: 331

[48] Miller M K, Wirth B D, Odette G R. Mater Sci Eng, 2003; A353: 133

[49] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, Walle E V, Gerard D R. Acta Mater, 2007; 55: 6852

[50] Miller M K, Sokolov M A, Nanstad R K, Russell K F. J Nucl Mater, 2006; 351: 187

[51] Miller M K, Russel K F. J Nucl Mater, 2007; 371: 145

[52] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F, Nanstad R K, Erak D Y, Zabusov O O. J Nucl Mater, 2009; 385: 615

[53] Cerezo A, Hirisawa S, Rozdilsky I, Smith G D W. Philos Trans R Soc Lond, 2003; 361A: 463

[54] Zhou B X, Wang J A, Liu Q D, Liu W Q, Wang W, Lin M D, Xu G, Chu D F. Mater China, 2011; 30: 1

(周邦新, 王均安, 刘庆东, 刘文庆, 王 伟, 林民东, 徐 刚, 楚大锋. 中国材料进展, 2011; 30: 1)

[55] Pareige P, Etienne A, Radiguet B. J Nucl Mater, 2009; 389: 259

[56] Etienne A, Radiguet B, Cunningham N J, Odette G R, Pareige P. J Nucl Mater, 2010; 406: 244

[57] Lozano–Perez S, Rodrigo P, Gontard L C. J Nucl Mater, 2011; 408: 289
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[8] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[9] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[10] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[11] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[12] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[13] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[14] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[15] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.