Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 49-55    DOI: 10.3724/SP.J.1037.2011.00435
  论文 本期目录 | 过刊浏览 |
长期时效对GH4169合金动态拉伸变形行为的影响
刘杨1), 王磊1), 何思斯1), 冯飞1), 吕旭东2), 张北江2)
1) 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
2) 钢铁研究总院高温材料研究所, 北京 100081
EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY
LIU Yang1), WANG Lei1), HE Sisi1), FENG Fei1), LV Xudong2), ZHANG Beijiang2)
1) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2) Department of High-temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

刘杨 王磊 何思斯 冯飞 吕旭东 张北江. 长期时效对GH4169合金动态拉伸变形行为的影响[J]. 金属学报, 2012, 48(1): 49-55.
, , , , , . EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY[J]. Acta Metall Sin, 2012, 48(1): 49-55.

全文: PDF(4309 KB)  
摘要: 研究了长期时效对GH4169合金的显微组织和动态拉伸性能及变形行为的影响规律及机制. 结果表明, 应变速率为101-102 s-1时, 合金强度受时效时间影响显著, 断裂延伸率随时效时间的延长呈降低趋势, 在时效500 h后基本保持不变; 高应变速率(103 s-1)条件下, 长期时效对合金强度无明显影响, 而断裂延伸率受时效时间的影响显著, 长期时效造成的合金塑性劣化现象提前发生. 高应变速率变形过程中, 位错运动受阻来不及释放, 在时效0-1000 h范围内, 合金未出现强化相峰值尺寸效应, 强度受时效时间的影响并不明显. 长期时效后GH4169合金晶界$\delta$相附近无析出带的产生, 导致动态载荷下晶界塑性变形的协调能力降低, 应变速率为103 s-1时, 合金塑性在短时间时效后迅速下降.
关键词 GH4169合金长期时效动态载荷变形行为    
Abstract:In traditional aeroengine manufacturing industry, the variation and mechanism of the mechanical property of superalloy used for rotating parts under the actual dynamic load is not given full considerations during its structure design. The mechanical property and deformation behavior of the alloys under the dynamic load have significant difference compared with that under the static load, and therefore the study on the deformation behavior of the alloy under the dynamic load is important for the safety of rotating parts used under the severe service conditions. The effect of microstructural changes of long-term aging GH4169 alloy on the mechanical properties through tensile testing at strain rates ranging from 101 to 103 s-1 was examined in this paper. The tensile deformation behavior of the alloy and the mechanisms were also discussed. The results showed that the strength of the alloy depends strongly on the aging time, the fracture elongation decreases with the increasing aging time and remains unchanged when aged for 500 h when tensile tested at the strain rates ranging from 101 to 103 s-1. And when the strain rate is high up to 103 s-1, the elongation depends strongly on the aging time and the degradation of ductility by the long-term aging happens ahead of time, but the aging time has no obvious effect on the strength of the alloy. Through tensile testing at the strain rate of 103 s-1, it is too late to release the blocked dislocation motion in the way of dislocation decomposition or climb in the alloy. And there is no peaking size effect of the strengthening phase in the alloy with the aging time ranging from 0 to 1000 h and there is no obvious effect of the aging time on the strength of the alloy. The ability of accommodation of plastic deformation by grain boundaries reduces under the dynamic loads due to the existence of precipitate free zones around δ phase at the grain boundary in the alloy by long-term aging, and thus the ductility of the alloy by aging for a shorter time decreases rapidly when tensile tested at the strain rate of 103 s-1.
Key wordsGH4169 alloy    long-term aging    dynamic load    deformation behavior
收稿日期: 2011-07-11     
基金资助:

国家重点基础研究发展计划项目2010CB631203, 国家自然科学基金项目51001021, 国家教育部博士点专项基金项目20100042120008和20100042110006资助

作者简介: 刘杨, 男, 1978年生, 讲师, 博士
[1] Soo S L, Hood R, Aspinwall D K, Voice W E, Sage C. CIRP Ann–Manuf Technol, 2011; 60: 89

[2] Fang N, Wu Q. J Mater Process Technol, 2009; 209: 4385

[3] Sharghi–Moshtagh R, Asgari S. J Mater Process Technol, 2004; 147: 343

[4] Graverend J B, Cormier J, Caron P, Kruch S, Gallerneau F, Mendez J. Mater Sci Eng, 2011; A528: 2620

[5] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Acta Metall Sin, 2010; 46: 213

(秦学智, 郭建亭, 袁超, 侯介山, 周兰章, 叶恒强. 金属学报, 2010; 46: 213)

[6] Li G H, Wang M J, Kang R K. Mater Sci Technol, 2010; 18: 824

(李国和, 王敏杰, 康仁科. 材料科学与工艺, 2010; 18: 824)

[7] Zan X, He Y H, Wang Y, Xia Y M. Trans Nonferrous Met Soc, 2011; 21: 45

[8] Lee W S, Lin C F. Mater Sci Eng, 1998; A241: 48

[9] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541

[10] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511

[11] Odeshi A G, Al–ameeri S, Bassim M N. J Mater Process Technol, 2005; 162–163: 385

[12] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565

[13] Lu X D, Du J H, Deng Q, Qu J L, Zhuang J Y, Zhong Z Y. Mater Sci Eng, 2007; A452–453: 584

[14] Hajmrle K, Aangers R, Dufour G. Metall Trans, 1982; 13A: 5

[15] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289

(谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)

[16] Wang L. Mechanical Properties of Materials. Shenyang: Northeastern University Press, 2007: 42

(王磊. 材料的力学性能. 沈阳: 东北大学出版社, 2007: 42)

[17] Walgraef D. Mater Sci Eng, 2010; A322: 167

[18] Ning Y Q, Yao Z K, Xie X H, Guo H Z, Tan L J, Tao Y. Acta Metall Sin, 2010; 46: 324

(宁永权, 姚泽坤, 谢兴华, 郭鸿镇, 谭立军, 陶宇. 金属学报, 2010; 46: 324)

[19] Zhang J H, Jin T, Xu Y B, Hu Z Q, Wu X. J Mater Sci Technol, 2002; 18: 159

[20] Deng Z Y, Huang B Y, He Y H, Sun J. Rare Met Mater Eng, 1999; 28: 228

(邓忠勇, 黄伯云, 孙跃辉, 孙坚. 稀有金属材料与工程, 1999; 28: 228)

[21] Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, Lu Z J. Dynamic Behavior of Materials. Beijing: National Defense Industry Press, 2006: 225

(Meyers M A著; 张庆明, 刘彦, 黄风雷, 吕中杰 译. 材料的动力学行为. 北京: 国防工业出版社, 2006: 225)

[22] Xie X S, Dong J X, Zhang M C. Mater Sci Forum, 2007; 539–543: 262

[23] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Metall Mater Trans, 2002; 33A: 3741

[24] Lours P, Coujou A, Coulomb P. Acta Metall Mater, 1991; 39: 1787

[25] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723

[26] Wang Y W, Yang L Y, You W, Bai B Z. Mater Sci Forum, 2005; 475–479: 3003
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[6] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[7] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[8] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[9] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[12] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[13] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[14] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[15] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.