Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 707-716    DOI: 10.11900/0412.1961.2015.00551
  论文 本期目录 | 过刊浏览 |
GH4169合金非均匀组织在加热过程中的演化机理*
王建国(),刘东,杨艳慧
西北工业大学凝固技术国家重点实验室, 西安 710072
MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS
Jianguo WANG(),Dong LIU,Yanhui YANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
Jianguo WANG, Dong LIU, Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. Acta Metall Sin, 2016, 52(6): 707-716.

全文: PDF(1783 KB)   HTML
摘要: 

通过对第二相状态、晶界取向差及晶粒尺寸演化的分析, 研究了GH4169合金不均匀组织在加热过程中的演化机理. 结果表明, GH4169合金中δ相的体积分数在低温下随温度的升高和时间的延长而增加; 在高温时随温度的升高而降低, 随时间的延长先增加后降低至恒定值. 第二相的钉扎作用表现为: 晶内析出的δ相和γ"相阻碍位错的运动, 沿晶界析出的δ相阻碍再结晶晶粒的形核和长大, 碳化物阻碍晶粒长大. 小角度晶界的体积分数随加热温度的升高和时间的延长而降低; 高温下, 退火孪晶的生长使得小角度晶界含量增加. GH4169合金的组织演化机理主要包括: 亚晶长大、再结晶晶粒的长大和退火孪晶的长大. 新的再结晶晶粒主要通过亚晶长大过程获得, 亚晶长大过程主要通过小角度晶界的转动和位错的迁移完成. 晶粒长大过程受到抑制时, 合金通过退火孪晶的形核及长大耗散其吸收的热量.

关键词 GH4169合金第二相晶界取向差亚晶长大    
Abstract

The Ni-Fe-based superalloy GH4169 (Inconel718) is widely used for several critical gas-turbine components which are hot forged. Its microstructure and property are sensitive to the parameter adjustment during hot working process. To obtain required low-cycle fatigue and fracture properties, it is essential that the microstructure is controlled during preheating and heat treatment. The evolution of non-uniform microstructure during hot working is more complicated than that of uniform microstructure. On the other hand, various secondary phases can be observed in GH4169 alloy, thus it is important to investigate the effect of secondary phases on the microstructure evolution during forging process. In this work, the mechanisms of non-uniform microstructure evolution in GH4169 alloy were studied by analyzing the evolution of secondary phases, grain boundary misorientation, grain size and interactions of dislocation. It is found that the volume fraction of δ phase increases with the increasing of temperature and heating time at the lower temperature. While at the higher temperature, it decreases monotonously with the temperature increasing, but increases first and then decreases to stable value with time increasing. The pinning effect of secondary phases in GH4169 alloy can be concluded that the γ" phase and δ phase precipitated within the grains retain movement of dislocation, the δ phase precipitated at the grain boundary hinders the nucleation and growth of recrystallized grains, and the carbides limits the grain growth. The frequency of low angle grain boundary decreases with temperature and time increasing, and the mobility of low angle grain boundary increases with temperature increasing. The uniformity of microstructure and the size of equaxied subgrain increases with heating temperature and time increasing. Continuous recrystallization of elongated grain occurs at specific conditions. The mechanisms of non-uniform microstructure evolution during heating process can be concluded as subgrain growth, recrystallized grain growth, and anneal twinning nucleation and growth. The recrystallized grains are formed by the growth of subgrains conducted by the rotation of low angle grain boundary and the movement of dislocation. When the grain growth is pinned, the mechanisms for the energy dissipation is the nucleation and growth of anneal twinning. And the growth of anneal twinning promotes the generation of low angle grain boundaries at the tip of partial anneal twinning.

Key wordsGH4169 alloy    secondary phase    grain boundary misorientation    subgrain growth
收稿日期: 2015-10-30     
基金资助:* 国家自然科学基金资助项目51504195
Grain boundary θ Initial state 1163 K,
30 min
1233 K,
60 min
1263 K,
60 min
1283 K,
60 min
1313 K,
60 min
Low angle 0°~10° 65.3 62.3 47.5 13.9 1.5 2.8
10°~15° 2.0 0.9 0.9 0.8 2.5 3.0
High angle 15°~25° 4.0 3.1 3.2 3.2 3.5 5.0
25°~35° 4.9 4.9 6.1 8.2 8.5 7.8
35°~45° 7.1 7.6 10.8 17.6 13.1 12.3
45°~55° 8.7 7.6 11.2 13.9 15.1 11.6
55°~65° 8.0 13.4 20.6 42.3 55.7 57.4
表1  GH4169合金在不同温度加热不同时间后晶界取向差分布
图1  GH4169合金原始组织的OM像、δ相的SEM像、晶界分布的EBSD图及取向分布图
图2  GH4169合金在不同温度下加热60 min后第二相的SEM像
图3  GH4169合金在1163 K加热60 min后第二相分布的高倍SEM像
图4  加热时间对GH4169合金中δ相体积分数的影响
图5  车削钛合金速度为65 m/min时无涂层和不同Al含量涂层刀具的后刀面磨损SEM像
图6  车削钛合金速度为100 m/min时无涂层和不同Al含量涂层刀具的后刀面磨损SEM像
图7  不同条件下加热后GH4169合金晶界取向差分布
图8  在1313 K加热不同时间后GH4169合金晶界取向差分布
图9  GH4169合金亚晶演化示意图
图10  GH4169合金变形拉长晶粒演化示意图
图11  GH4169合金在1163 K加热60 min后的TEM 明场像
[1] Thomas A, El-Wahabi M, Cabrera J M, Prado J M.J Mater Process Tech, 2006; 177: 469
[2] Li R B, Yao M, Liu W C, He X C.Scr Mater, 2002; 46: 635
[3] Tian S G, Wang X, Xie J, Liu C, Guo Z G, Liu J, Sun W R.Acta Metall Sin, 2013; 49: 845
[3] (田素贵, 王欣, 谢君, 刘臣, 郭忠革, 刘姣, 孙文儒. 金属学报, 2013; 49: 845)
[4] Luo Z J, Liu D.J Mater Process Tech, 1996; 59: 381
[5] Guest R P, Tin S.In: Loria E A ed., Superalloys 718, 625, 706 and Derivatives 2005, Warrendale, PA: TMS, 2005: 625
[6] Wen D, Lin Y C, Li H, Chen X, Deng J, Li L.Mater Sci Eng, 2014; A591: 183
[7] Liu H, Zhang L, He X, Qu X, Zhang G, Liu H, Zhang L, Zhang G.High Temp Mater, 2014; 33: 485
[8] Azadian S, Wei L Y, Warren R.Mater Charact, 2004; 53(1): 7
[9] Hosseinifar M, Asgari S.Mater Sci Eng, 2010; A527: 7313
[10] Lee H, Hou W.Mater Trans, 2012; 53: 1334
[11] Wang Y, Lin L, Shao W Z, Zhen L, Zhang X M.Trans Mater Heat Treat, 2007; 28: 176
[11] (王岩, 林琳, 邵文柱, 甄良, 张新梅. 材料热处理学报, 2007; 28: 176)
[12] Weaver D S, Semiatin S L.Scr Mater, 2007; 57: 1044
[13] Fullman R L.J Appl Phys, 1951; 22: 1350
[14] Sleeswyk A W.Acta Metall, 1964; 12: 669
[15] Devaux A, Eacute L N, Molins R, Pineau A, Organista A, Guédou J Y, Uginet J F, Héritier P.Mater Sci Eng, 2008; A486: 117
[16] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1992; 23A: 2015
[17] Wei X P, Zheng W, Song Z, Lei T, Yong Q, Xie Q.J Wuhan Univ Technol: Mater Sci Ed, 2014; 29: 379
[18] Muralidharan G, Thompson R G.Scr Mater, 1997; 36: 755
[19] Wang L M, Chen C C.Mater Lett, 2012; 67: 158
[20] Lin Y C, Wu X, Chen X, Chen J, Wen D, Zhang J, Li L.J Alloys Compd, 2015; 640: 101
[21] Araujo L S, Dos Santos D S, Godet S, Dille J, Pinto A L, de Almeida L H.J Mater Eng Perform, 2014; 23: 4130
[22] Lin Y C, Wu X, Chen X, Chen J, Wen D, Zhang J, Li L.J Alloys Compd, 2015; 640: 101
[23] Tian G, Jia C, Liu J, Hu B.Mater Des, 2009; 30: 433
[24] Song K, Aindow M.Mater Sci Eng, 2008; A479: 365
[25] Ferry M, Humphreys F J.Acta Mater, 1996; 44: 1293
[26] Li J C M.J Appl Phys, 1962; 33: 2958
[27] Gleiter H.Acta Metall, 1969; 17: 1421
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[4] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[5] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[6] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[7] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[8] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[9] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[10] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[11] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[12] 王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
[13] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[14] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[15] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.