Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1123-1132    DOI: 10.11900/0412.1961.2016.00051
  论文 本期目录 | 过刊浏览 |
AZ80镁合金动态再结晶软化行为研究*
蔡贇1,孙朝阳1(),万李2,阳代军2,周庆军2,苏泽兴1
1 北京科技大学机械工程学院, 北京 100083
2 首都航天机械公司, 北京 100076
STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY
Yun CAI1,Chaoyang SUN1(),Li WAN2,Daijun YANG2,Qingjun ZHOU2,Zexing SU1
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Capital Aerospace Machinery Company, Beijing 100076, China
全文: PDF(1457 KB)   HTML
摘要: 

采用等温压缩实验获得了变形温度为200~400 ℃, 应变速率为0.001~1 s-1的AZ80镁合金的流变应力曲线, 考虑动态硬化及软化特性描述了AZ80镁合金热变形过程动态再结晶主导的软化行为. 提出基于动态材料模型的应变速率敏感性指数表征动态再结晶引起的能量耗散, 该指数通过引入动态再结晶体积分数描述微观组织演化的耗散功. 考虑变形温度和应变速率构建了不同应变的应变速率敏感性指数图, 实现应变速率敏感性指数对动态再结晶软化行为的量化表征. 在此基础上, 研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响, 重点分析了不同应变的应变速率敏感性指数图特征. 结果表明: 随着变形温度的升高和应变速率的降低, 动态再结晶软化临界应变减小, 动态再结晶体积分数增加; 应变速率敏感性指数与动态再结晶体积分数正相关, 指数大于0.21的区域对应着高动态再结晶体积分数, 且均位于低应变速率下, 并通过动态再结晶软化的微观组织进行了验证.

关键词 镁合金动态再结晶变形行为应变速率敏感性    
Abstract

Magnesium alloys are considered as one of the lightest structural metallic materials with excellent properties such as high specific strength, superior damping characteristics and electromagnetic shielding performance. In order to improve the mechanical properties of magnesium alloys, the hot rolling, hot extrusion and other hot forming processes are often introduced to produce the high performance parts. Both of the two softening mechanisms, dynamic recovery and dynamic recrystallization (DRX), occur during the hot deformation. As an important softening mechanism in hot processing, DRX is beneficial to obtaining fine grains structure, eliminating defects and improving mechanical properties for magnesium alloys. In this work, isothermal compression tests of AZ80 magnesium alloy were conducted on Gleeble thermo-mechanical simulator in the temperature range of 200 to 400 ℃ and strain rate range of 0.001 to 1 s-1. In view of the dynamic hardening and softening mechanisms, the softening behavior of AZ80 magnesium alloy, dominated by dynamic recrystallization, was depicted. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution which was indicated by the strain rate sensitivity value based on the dynamic material model. To quantify the dynamic recrystallization softening behavior by the strain rate sensitivity (SRS) value, the SRS value distribution maps were constructed depending on various temperatures and strain rates. Therefore, the critical conditions and evolution process were studied in terms of temperatures and strain rates, while features of the SRS value distribution maps at different strains were deeply investigated. It can be concluded that the value of dynamic recrystallization critical condition decreases and dynamic recrystallization volume fraction increases when the temperature increases and strain rate decreases during the deformation. The strain rate sensitivity was positive correlated with the dynamic recrystallization volume fraction. It has been verified effectively by the analysis of microstructure that the region in which the strain rate sensitivity value is above 0.21 corresponds to the higher dynamic recrystallization volume fraction and lower strain rate.

Key wordsmagnesium alloy    dynamic recrystallization    deformation behavior    strain rate sensitivity
收稿日期: 2016-02-01     
基金资助:* 国家自然科学基金委员会-中国工程物理研究院联合基金项目U1330121, 国家自然科学基金项目51575039, 以及中南大学高性能复杂制造国家重点实验室开放课题基金项目Kfkt2015-01资助

引用本文:

蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
Yun CAI, Chaoyang SUN, Li WAN, Daijun YANG, Qingjun ZHOU, Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY. Acta Metall Sin, 2016, 52(9): 1123-1132.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00051      或      https://www.ams.org.cn/CN/Y2016/V52/I9/1123

图1  AZ80镁合金的动态回复型流变应力曲线及θ-ε曲线
图2  AZ80镁合金不同应变速率下的流变应力曲线
图3  变形温度250 ℃和应变速率0.1 s-1时AZ80镁合金的θ-σ及-(?θ/?σ)-σ曲线
图4  不同热变形条件下AZ80镁合金的θ-σ曲线及-?θ/?σ)-σ曲线
图5  σss, σc和σsat与σp的关系
图6  AZ80镁合金动态再结晶动力学模型参数k和n的确定
图7  AZ80镁合金动态再结晶体积分数演化规律
图8  应变为0.6和0.9时AZ80镁合金的SRS指数m分布
图9  典型热变形条件下AZ80镁合金的微观组织
[1] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J.Acta Metall Sin (Engl Lett), 2008; 21: 313
[2] Sun C Y, Luan J D, Liu G, Li R, Zhang Q D.Acta Metall Sin, 2012; 48: 853
[2] (孙朝阳, 栾京东, 刘赓, 李瑞, 张清东. 金属学报, 2012; 48: 853)
[3] Aghion E, Bronfin B, Eliezer D.J Mater Process Technol, 2001; 117: 381
[4] Lu S Q, Wang K L, Li X, Liu S B.Acta Metall Sin, 2014; 50: 1128
[4] (鲁世强, 王克鲁, 李鑫, 刘诗彪. 金属学报, 2014; 50: 1128)
[5] Mostafaei M A, Kazeminezhad M.Mater Sci Eng, 2012; A544: 88
[6] Jorge Jr A M, Regone W, Balancin O.J Mater Process Technol, 2003; 142: 415
[7] Liang H Q, Guo H Z, Ning Y Q, Yao Z K, Zhao Z L.Acta Metall Sin, 2014; 50: 871
[7] (梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 金属学报, 2014; 50: 871)
[8] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[9] Yang X Y, Zhang Z L, Zhang L, Wu X X, Wang J.Chin J Nonferrous Met, 2011; 21: 1801
[9] (杨续跃, 张之岭, 张雷, 吴新星, 王军. 中国有色金属学报, 2011; 21: 1801)
[10] Li H Z, Wei X Y, Ou Yang J, Jiang J, Li Y.Trans Nonferrous Met Soc Chin, 2013; 23: 3180
[11] Luan N, Li L X, Li G Y, Zhong Z H.Chin J Nonferrous Met, 2007; 17: 1678
[11] (栾娜, 李落星, 李光耀, 钟志华. 中国有色金属学报, 2007; 17: 1678)
[12] Yang Y S, Yang M, Guo J Q.Hot Work Technol, 2011; 40(24): 82
[12] (杨永顺, 杨明, 郭俊卿. 热加工工艺, 2011; 40(24): 82)
[13] Xu Y, Hu L X, Sun Y.J Alloys Compd, 2013; 580: 262
[14] Kwak T Y, Kim W J.Mater Sci Eng, 2014; A615: 222
[15] Zhou H T, Li Q B, Zhao Z K, Liu Z C, Wen S F, Wang Q D.Mater Sci Eng, 2010; A527: 2022
[16] Huang S H, Zhao Z D, Xia Z X, Cai H Y, Kang F, Hu Z K, Shu D Y.Rare Met Mater Eng, 2010; 39: 848
[16] (黄树海, 赵祖德, 夏志新, 蔡海艳, 康凤, 胡传凯, 舒大禹. 稀有金属材料与工程, 2010; 39: 848)
[17] Bussiba A, Ben Artzy A, Shtechman A, Ifergan S, Kupiec M.Mater Sci Eng, 2001; A302: 56
[18] Lin Y C, Chen X M, Wen D X, Chen M S.Comput Mater Sci, 2014; 83: 282
[19] Estrin Y, Mecking H.Acta Mater, 1984; 32: 57
[20] Mecking H, Kocks U F.Acta Mater, 1981; 29: 1865
[21] Bambach M.Acta Mater, 2013; 61: 6222
[22] Liang H Q, Guo H Z, Ning Y Q, Peng X N, Qin C, Shi Z F, Nan Y.Mater Des, 2014; 63: 789
[23] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[24] He Y B, Pan Q L, Tan Y J, Liu X Y, Li W B.Chin J Nonferrous Met, 2011; 21: 1205
[24] (何运斌, 潘清林, 覃银江, 刘晓艳, 李文斌. 中国有色金属学报, 2011; 21: 1205)
[25] Ponge D, Gottstein G.Acta Mater, 1998; 46: 69
[26] Picu R C.Acta Mater, 2004; 52: 3447
[27] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997;A234-236: 453
[28] Tang W N, Chen R S, Han E-H.Acta Metall Sin, 2006; 42: 1096
[28] (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[29] Cao Y, Di H S, Zhang J Q, Ma T J, Zhang J C.Acta Metall Sin, 2013; 49: 811
[29] (曹宇, 邸洪双, 张敬奇, 马天军, 张洁岑. 金属学报, 2013; 49: 811)
[30] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997; A234-236: 453
[31] Liang H Q, Nan Y, Ning Y Q, Li H, Zhang J L, Shi Z F, Guo H Z.J Alloys Compd, 2015; 632: 478
[32] Yang F Q, Song R B, Zhang C.Proc Eng, 2014; 81: 456
[33] Biswas A, Singh G, Sarkar S K, Krishnan M, Ramamurty U.Intermetallics, 2014; 54: 69
[34] Lin Y C, Wen D X, Deng J, Liu G, Chen J.Mater Des, 2014; 59: 115
[35] Jenab A, Karimi Taheri A.Int J Mech Sci, 2014; 78: 97
[36] Rao K P, Zhong T, Prasad Y V R K, Suresh K, Gupta M.Mater Sci Eng, 2015; A644: 184
[37] Lv B J, Peng J, Shi D W, Tang A T, Pan F S.Mater Sci Eng, 2013; A560: 727
[38] Sun C Y, Liu G, Zhang Q D, Li R, Wang L L.Mater Sci Eng, 2014; A595: 92
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[4] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[5] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[6] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[7] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[8] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[9] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[10] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[11] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[12] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[13] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[14] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[15] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.