Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 99-106    DOI: 10.3724/SP.J.1037.2011.00292
  论文 本期目录 | 过刊浏览 |
Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响
范永中, 张淑娟, 涂金伟, 孙霞, 刘芳, 李明升
江西科技师范学院江西省材料表面工程重点实验室, 南昌 330013
INFLUENCE OF DOPING WITH Si AND Y ON STRUCTURE AND PROPERTIES OF (Ti, Al)N COATING
FAN Yongzhong, ZHANG Shujuan, TU Jinwei, SUN Xia, LIU Fang, LI Mingsheng
Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013
引用本文:

范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
, , , , , . INFLUENCE OF DOPING WITH Si AND Y ON STRUCTURE AND PROPERTIES OF (Ti, Al)N COATING[J]. Acta Metall Sin, 2012, 48(1): 99-106.

全文: PDF(3603 KB)  
摘要: 分别在未施加偏压和施加-100 V偏压条件下, 利用磁控溅射技术在压气机叶片用 1Cr11Ni2W2MoV热强不锈钢基体上沉积了Ti0.3Al0.7N和Ti0.39Al0.55Si0.05Y0.01N硬质涂层. 实验结果表明, 施加偏压及Si和Y掺杂明显改变了涂层的相结构, 提高了涂层致密度, 施加-100 V偏压且添加Si和Y的涂层为非晶结构, 表面更加均匀致密. 950 ℃氧化实验表明: Ti0.39Al0.55Si0.05Y0.01NN涂层表面形成极薄且致密的 Al2O3保护性氧化膜, 大大降低了氧化速率. 施加-100 V偏压的(Ti, Al)N和(Ti, Al, Si, Y)N沉积态涂层与未施加偏压的相应涂层相比, 硬度均降低, 尤其是(Ti, Al, Si, Y)N涂层变化显著. 经950 ℃热处理, 施加偏压的(Ti, Al, Si, Y)N涂层硬度略有降低, 这是由于形成了硬度较低的B4相, 而未施加偏压的(Ti, Al, Si, Y)N涂层硬度显著提高, 这归因于B1相固溶体的分解. 划痕测试结果表明, 在实验载荷(50 N)下, 所有涂层均未出现连续性的剥落.
关键词 磁控溅射(Ti, Al)NSi和Y掺杂抗氧化性能硬度结合力    
Abstract:Composite metastable Ti0.3Al0.7N and Ti0.39Al0.55Si0.05Y0.01NN hard coatings were deposited on a wrought martensite steel 1Cr11Ni2W2MoV for aero-engine compressor blades by the magnetron sputtering system with the bias voltage of 0 and -100 V respectively. Detailed microstructure, chemical composition, crystal structure, hardness and adhesion were examined by means of FESEM, EDS, XRD, Micro hardness tester and scratch tester. The influence of doping with Si and Y and bias on structure, oxidation-resistance and mechanical properties of (Ti, Al)N coatings were investigated. Pulsed bias and the doping with Si and Y gave rise to the change of phase structure and improvement of density. Doping with small amounts of Si and Y into (Ti, Al)N significantly improved the oxidation resistance at 950 ℃. The oxidation-resistance of (Ti, Al, Si, Y)N is based on the formation of dense protective Al2O3 layer. The application of negative pulse led to decreased hardness for (Ti, Al)N while remarkable decrease of hardness for (Ti, Al, Si, Y)N. For (Ti, Al, Si, Y)N prepared under -100 V\linebreak bias, annealing 10 h at 950 ℃ slightly decreased it's hardness because of the formation of B4 structure. And for which deposited at 0 V bias, heat-treatment of 950 ℃ for 10 h improved the hardness from 26 GPa to 35 GPa. The hardness change of the coating may be ascribed the transition of B1 phase structure. Scratch tests show that the continuous spall is not occurred for all the coatings under the critical load of 50 N.
Key wordsmagnetron sputtering    (Ti, Al)N    doping with Si and Y    oxidation-resistance    hardness    adhesion
收稿日期: 2011-05-09     
基金资助:

江西省教育厅科学技术基金资助项目GJJ12586

作者简介: 范永中, 男, 1984年生, 硕士生
[1] Paldey S, Deevi S C. Mater Sci Eng, 2003; A3: 58

[2] Mayrhofer P H, Mitterer C, Hultman L, Clemens H. Prog Mater Sci, 2006; 51: 1032

[3] Ma S L, Jie W Q, Xu K W. Chin J Vac Sci Technol, 2002; 22: 438

(马胜利, 介万奇, 徐可为. 真空科学与技术学报, 2002; 22: 438)

[4] Inoue S, Uchida H, Yoshinaga Y, Koterazawa K. Thin Solid Films, 1997; 300: 171

[5] Li M S, Wang F H, Wang T G, Gong J, Sun C, Wen L S. Acta Metall Sin, 2003; 39: 55

(李明升, 王福会, 王铁钢, 宫俊, 孙超, 闻立时. 金属学报, 2003; 39: 55)

[6] Makino Y. Surf Coat Technol, 2005; 193: 185

[7] Pilloud D, Pierson J F, Marco de Lucas M C, Cavaleiro A. Surf Coat Technol, 2008; 202: 2413

[8] Veprek S, Reiprich S, Shizi L. Appl Phys Lett, 1995; 66: 2640

[9] Vaz F, Rebouta L, Andritschky M, Silva M, Soares J C. Surf Coat Technol, 1998; 98: 912

[10] Pfeiler M, Zechner J, Penoy M, Michotte C, Mitterer C, Kathrein M. Surf Coat Technol, 2009; 203: 3104

[11] Lembke M I, Lewis D B, M¨unz W D, Titchmarsh J M. Surf Eng, 2001; 17: 153

[12] Li M S, Feng C J, Wang F H. Funct Mater (suppl), 2007; (38): 2615

(李明升, 冯长杰, 王福会. 功能材料(增刊), 2007; (38): 2615)

[13] Mao Y F, Tang W G, Liu J L, Han P G. Tool Eng, 2006; 40: 20

(毛延发, 唐为国, 刘金良, 韩培刚. 工具技术, 2006; 40: 20)

[14] Jung H G, Kim K Y. Oxid Met, 1998; 49: 403

[15] Flink A, Andersson J M, Alling B, Daniel R, Sjolen J, Karlsson L, Hultman L. Thin Solid Films, 2008; 517: 714

[16] Carvalho S, Rebouta L, Ribeiro E, Vaz F, Tavares C J, Alves E, Barradas N P, Riviere J P. Vacuum, 2009; 83: 1206

[17] Vennemann A, Stock H R, Kohlscheen J, Rambadt S, Erkens G. Surf Coat Technol, 2003; 174–175: 408

[18] Wang F Z, Ma W C. Vapor Deposition Applications Technology. Beijing: China Machine Press, 2006: 291

(王福贞, 马文存. 气相沉积应用技术. 北京: 机械工业出版社, 2006: 291)

[19] Makino Y. Mater Sci Eng, 1995; 2: 67

[20] Vaz F, Rebouta L, Andritschky M, Silva M, Soares J C. J Eur Ceram Soc, 1997; 17: 1971

[21] Banakh O, Schmid P E, Sanjines R, Levy F. Surf Coat Technol, 2003; 163: 57

[22] Chang Y Y, Hsiao C Y. Surf Coat Technol, 2009; 204: 992

[23] M¨unz W D. Werkst Korros, 1990; 41: 753

[24] Veprek S, Sarott F A, Iqbal Z. Phys Rev, 1987; B36: 3344

[25] Veprek S, Maritza G J, Veprek H, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1

[26] Raveh A, Zukerman I, Shneck R, Avni R, Fried I. Surf Coat Technol, 2007; 201: 6136

[27] Tanaka Y, Ichimiya N, Onishi Y, Yamada Y. Surf Coat Technol, 2001; 146–147: 215

[28] Carvalho S, Rebouta L, Cavaleiro A, Rocha L A, Gomes J, Alves E. Thin Solid Films, 2001; 398–399: 391
[1] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[5] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[6] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[7] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[10] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[11] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[12] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[13] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[14] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[15] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.